Mumford representation and Riemann-Roch space of a divisor on a hyperelliptic curve

被引:1
|
作者
Falcone, Giovanni [1 ]
Filippone, Giuseppe [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Goppa codes; Riemann-Roch space; Hyperelliptic curves; GOPPA CODES;
D O I
10.1007/s12095-024-00713-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For an (imaginary) hyperelliptic curve H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} of genus g, with a Weierstrass point omega \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} , taken as the point at infinity, we determine a basis of the Riemann-Roch space L ( Delta + m omega ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\Delta + m \Omega )$$\end{document} , where Delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is of degree zero, directly from the Mumford representation of Delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} . This provides in turn a generating matrix of a Goppa code.
引用
收藏
页码:949 / 959
页数:11
相关论文
共 50 条
  • [41] Faithfulness of Actions on Riemann-Roch Spaces
    Koeck, Bernhard
    Tait, Joseph
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (04): : 848 - 869
  • [42] Riemann-Roch for algebraic stacks: I
    Joshua, R
    COMPOSITIO MATHEMATICA, 2003, 136 (02) : 117 - 169
  • [43] A SUPPLEMENT TO THE RIEMANN-ROCH THEOREM ON A NONCOMPACT RIEMANN SURFACE
    BIKCHANTAEV, IA
    MATHEMATICAL NOTES, 1984, 35 (1-2) : 52 - 54
  • [44] A generalized Hirzebruch Riemann-Roch theorem
    Ramadoss, Ajay C.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) : 289 - 292
  • [45] Harmonic analysis and the Riemann-Roch theorem
    Osipov, D. V.
    Parshin, A. N.
    DOKLADY MATHEMATICS, 2011, 84 (03) : 826 - 829
  • [46] RIEMANN-ROCH THEORY ON FINITE SETS
    James, Rodney
    Miranda, Rick
    JOURNAL OF SINGULARITIES, 2014, 9 : 75 - 81
  • [47] The Riemann-Roch theorem for the Adams operations
    Navarro, A.
    Navarro, J.
    EXPOSITIONES MATHEMATICAE, 2023, 41 (04)
  • [48] Riemann-Roch for equivariant Chow groups
    Edidin, D
    Graham, W
    DUKE MATHEMATICAL JOURNAL, 2000, 102 (03) : 567 - 594
  • [49] An Approach to the Bases of Riemann-Roch Spaces
    Hu, Chuangqiang
    Yang, Shudi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 1239 - 1248
  • [50] A STOCHASTIC APPROACH TO THE RIEMANN-ROCH THEOREM
    SHIGEKAWA, I
    UEKI, N
    OSAKA JOURNAL OF MATHEMATICS, 1988, 25 (04) : 759 - 784