Mumford representation and Riemann-Roch space of a divisor on a hyperelliptic curve

被引:1
|
作者
Falcone, Giovanni [1 ]
Filippone, Giuseppe [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Goppa codes; Riemann-Roch space; Hyperelliptic curves; GOPPA CODES;
D O I
10.1007/s12095-024-00713-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For an (imaginary) hyperelliptic curve H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} of genus g, with a Weierstrass point omega \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} , taken as the point at infinity, we determine a basis of the Riemann-Roch space L ( Delta + m omega ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\Delta + m \Omega )$$\end{document} , where Delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is of degree zero, directly from the Mumford representation of Delta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} . This provides in turn a generating matrix of a Goppa code.
引用
收藏
页码:949 / 959
页数:11
相关论文
共 50 条