Crowdsourcing citizens for statewide mapping of per- and polyfluoroalkyl substances (PFAS) in Florida drinking water

被引:3
|
作者
Sinkway, Thomas D. [1 ]
Mehdi, Qaim [2 ]
Griffin, Emily K. [2 ]
Correia, Keyla [2 ]
Camacho, Camden G. [1 ]
Aufmuth, Joe [3 ]
Ilvento, Carolina [4 ]
Bowden, John A. [1 ,2 ]
机构
[1] Univ Florida, Dept Chem, Coll Liberal Arts & Sci, Gainesville, FL 32611 USA
[2] Univ Florida, Coll Vet Med, Ctr Environm & Human Toxicol, Dept Physiol Sci, Gainesville, FL 32611 USA
[3] Univ Florida, George A Smathers Lib, Gainesville, FL 32611 USA
[4] Univ Florida, Coll Journalism & Commun, Dept Journalism, Gainesville, FL 32611 USA
关键词
PFAS; Drinking water; Florida; Statewide mapping; Crowdsourcing; LC-MS/MS;
D O I
10.1016/j.scitotenv.2024.171932
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent chemicals that have been associated with a diverse array of adverse environmental and human health related effects. In addition to a growing list of health concerns, PFAS are also ubiquitously used and pervasive in our natural and built environments, and they have an innate ability to be highly mobile once released into the environment with an unmatched ability to resist degradation. As such, PFAS have been detected in a wide variety of environmental matrices, including soil, water, and biota; however, the matrix that largely dictates human exposure to PFAS is drinking water, in large part due to their abundance in water sources and our reliance on drinking water. As Florida is heavily reliant upon water and its varying sources, the primary objective of this study was to survey the presence of PFAS in drinking water collected from taps from the state of Florida (United States). In this study, 448 drinking water samples were collected by networking with trained citizen scientists, with at least one sample collected from each of the 67 counties in Florida. Well water, tap water , bottled water, all sourced from Florida, were extracted , analyzed (31 PFAS) using isotope dilution and ultra -high-performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Overall, when examining & sum;PFAS: the minimum, maximum, median, and mean were ND, 219, 2.90, and 14.06 ng/L, respectively. The data herein allowed for a comparison of PFAS in drinking water geographically within the state of Florida, providing vital baseline concentrations for prospective moni- toring and highlighting hotspots that require additional testing and mitigation. By incorporating citizen scientists into the study, we aimed to educate impacted communities regarding water quality issues and solutions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Prenatal and perinatal exposure to Per- and polyfluoroalkyl substances (PFAS)-contaminated drinking water impacts offspring neurobehavior and development
    Marchese, Melissa J.
    Zhu, Tianyi
    Hawkey, Andrew B.
    Wang, Katherine
    Yuan, Emi
    Wen, Jinchen
    Be, Sara E.
    Levin, Edward D.
    Feng, Liping
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 917
  • [42] Prenatal and perinatal exposure to Per- and polyfluoroalkyl substances (PFAS)-contaminated drinking water impacts offspring neurobehavior and development
    Marchese, Melissa J.
    Zhu, Tianyi
    Hawkey, Andrew B.
    Wang, Katherine
    Yuan, Emi
    Wen, Jinchen
    Be, Sara E.
    Levin, Edward D.
    Feng, Liping
    Science of the Total Environment, 2024, 917
  • [43] Drinking water nanofiltration with concentrate foam fractionation-A novel approach for removal of per- and polyfluoroalkyl substances (PFAS)
    McCleaf, Philip
    Stefansson, William
    Ahrens, Lutz
    WATER RESEARCH, 2023, 232
  • [44] Advances in per- and polyfluoroalkyl substances (PFAS) detection and removal techniques from drinking water, their limitations, and future outlooks
    Zahra, Zahra
    Song, Minkyung
    Habib, Zunaira
    Ikram, Sadaf
    EMERGING CONTAMINANTS, 2025, 11 (01)
  • [45] A Comprehensive Statewide Spatiotemporal Stream Assessment of Per- and Polyfluoroalkyl Substances (PFAS) in an Agricultural Region of the United States
    Kolpin, Dana W.
    Hubbard, Laura E.
    Cwiertny, David M.
    Meppelink, Shannon M.
    Thompson, Darrin A.
    Gray, James L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2021, 8 (11) : 981 - 988
  • [46] An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS)
    Shojaei, Marzieh
    Kumar, Naveen
    Guelfo, Jennifer L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (20) : 14517 - 14527
  • [47] Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS)
    Clark, Rebecca B.
    Dick, Jeffrey E.
    CHEMICAL COMMUNICATIONS, 2021, 57 (66) : 8121 - 8130
  • [48] Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids
    Garg, Anushka
    Shetti, Nagaraj P.
    Basu, Soumen
    Nadagouda, Mallikarjuna N.
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [49] Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing
    Schymanski, Emma L.
    Zhang, Jian
    Thiessen, Paul A.
    Chirsir, Parviel
    Kondic, Todor
    Bolton, Evan E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (44) : 16918 - 16928
  • [50] Tools for Investigating the Expanding Per- and Polyfluoroalkyl Substances (PFAS) Universe
    Schwichtenberg, Trevor
    LCGC NORTH AMERICA, 2022, 40 (11) : 546 - 548