Learning model combining convolutional deep neural network with a self-attention mechanism for AC optimal power flow

被引:3
|
作者
Tran, Quan [1 ]
Mitra, Joydeep [2 ]
Nguyen, Nga [3 ]
机构
[1] Danang Power Co, Danang, Vietnam
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[3] Univ Wyoming, Dept Elect Engn & Comp Sci, Laramie, WY 82071 USA
关键词
Convolutional neural network; Deep neural network; Generation cost; Mean absolute error; Optimal power flow (OPF); Self-attention; OPTIMIZATION; OPF;
D O I
10.1016/j.epsr.2024.110327
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Alternating current optimal power flow (OPF) analysis is critical for efficient and reliable operation of power systems. For large systems or repetitive computations, the traditional methods such as the direct and gradient methods, or non-traditional methods, such as the genetic algorithm and simulating annealing, are timeconsuming and unsuitable for real -time computing. The work in this paper proposes a novel framework to obtain the optimal solution of power flow in real -time using a combination of convolutional neural networks and a self -attention mechanism. All parameters of the power networks are rearranged in an image-like shape of a multi-channel image where each channel is a two-dimensional matrix. The proposed approach is adaptive with every input size of power systems as well as frequent variations of network topologies without intervention to the framework core. The encompassment of all power system contexts in which all parameters of internal elements, generation costs, and topology information are included, contributes to the higher accuracy of inference compared to other current machine-learning-based OPF-solving methods. Besides, the proposed framework established on ubiquitous platforms is effortlessly integrated into current infrastructures of power systems, and the great efficiency along with the computation speed may serve as a critical point for practical implications, such as enabling faster decision-making during real -time operations, predicting system contingencies, and remedial actions based on an offline pre-trained model. This supervised learning process is applied to the dataset of four case studies of meshed power systems: the IEEE 5 -bus system (IEEE-5), the IEEE 30 -bus system (IEEE-30), the IEEE 39 -bus system (IEEE-39), and the IEEE 57 -bus system (IEEE-57) to prove the efficacy of the proposed method.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Dynamic Structured Neural Topic Model with Self-Attention Mechanism
    Miyamoto, Nozomu
    Isonuma, Masaru
    Takase, Sho
    Mori, Junichiro
    Sakata, Ichiro
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5916 - 5930
  • [32] A deep learning sequence model based on self-attention and convolution for wind power prediction
    Liu, Chien-Liang
    Chang, Tzu-Yu
    Yang, Jie-Si
    Huang, Kai-Bin
    RENEWABLE ENERGY, 2023, 219
  • [33] Crop leaf disease recognition based on Self-Attention convolutional neural network
    Zeng, Weihui
    Li, Miao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 172
  • [34] Self-attention based GRU neural network for deep knowledge tracing
    Jin, Shangzhu
    Zhao, Yan
    Peng, Jun
    Chen, Ning
    Xue, Run
    Liang, Minghui
    Jiang, Yunfeng
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1436 - 1440
  • [35] FCN-Attention: A deep learning UWB NLOS/LOS classification algorithm using fully convolution neural network with self-attention mechanism
    Pei, Yu
    Chen, Ruizhi
    Li, Deren
    Xiao, Xiongwu
    Zheng, Xingyu
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (04): : 1162 - 1181
  • [36] A hybrid deep learning model by combining convolutional neural network and recurrent neural network to detect forest fire
    Ghosh, Rajib
    Kumar, Anupam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (27) : 38643 - 38660
  • [37] Self-Attention based Siamese Neural Network recognition Model
    Liu, Yuxing
    Chang, Geng
    Fu, Guofeng
    Wei, Yingchao
    Lan, Jie
    Liu, Jiarui
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 721 - 724
  • [38] A hybrid deep learning model by combining convolutional neural network and recurrent neural network to detect forest fire
    Rajib Ghosh
    Anupam Kumar
    Multimedia Tools and Applications, 2022, 81 : 38643 - 38660
  • [39] Prosodic Structure Prediction using Deep Self-attention Neural Network
    Du, Yao
    Wu, Zhiyong
    Kang, Shiyin
    Su, Dan
    Yu, Dong
    Meng, Helen
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 320 - 324
  • [40] ResDeepSurv: A Survival Model for Deep Neural Networks Based on Residual Blocks and Self-attention Mechanism
    Wang, Yuchen
    Kong, Xianchun
    Bi, Xiao
    Cui, Lizhen
    Yu, Hong
    Wu, Hao
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024, 16 (02) : 405 - 417