INCOMPRESSIBLE LIMIT OF IDEAL MAGNETOHYDRODYNAMICS IN A DOMAIN WITH BOUNDARIES

被引:0
|
作者
琚强昌
王佳玮
机构
[1] InstituteofAppliedPhysicsandComputationalMathematics
关键词
D O I
暂无
中图分类号
O361.3 [磁流体力学];
学科分类号
摘要
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
引用
收藏
页码:1441 / 1465
页数:25
相关论文
共 50 条
  • [21] A Beale-Kato-Majda criterion for free boundary incompressible ideal magnetohydrodynamics
    Fu, Jie
    Hao, Chengchun
    Yang, Siqi
    Zhang, Wei
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (09)
  • [22] Current-sheet formation in 3D ideal incompressible magnetohydrodynamics
    Grauer, R
    Marliani, C
    PHYSICAL REVIEW LETTERS, 2000, 84 (21) : 4850 - 4853
  • [23] INCOMPRESSIBLE LIMIT FOR THE FULL MAGNETOHYDRODYNAMICS FLOWS UNDER STRONG STRATIFICATION ON UNBOUNDED DOMAINS
    Woo, Gyungsoo
    Kwon, Young-Sam
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (01) : 135 - 155
  • [24] Incompressible limit of the Hookean elastodynamics in a bounded domain
    Liu, Guowei
    Xu, Xin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [25] Incompressible limit of the Hookean elastodynamics in a bounded domain
    Guowei Liu
    Xin Xu
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [26] Expanding Domain Limit for Incompressible Fluids in the Plane
    James P. Kelliher
    Communications in Mathematical Physics, 2008, 278 : 753 - 773
  • [27] Expanding domain limit for incompressible fluids in the plane
    Kelliher, James P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (03) : 753 - 773
  • [28] Zero surface tension limit of the free-boundary problem in incompressible magnetohydrodynamics*
    Gu, Xumin
    Luo, Chenyun
    Zhang, Junyan
    NONLINEARITY, 2022, 35 (12) : 6349 - 6398
  • [29] Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations
    Hao, Chengchun
    Luo, Tao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 299 : 542 - 601
  • [30] Linear and nonlinear stability analysis for two-dimensional ideal magnetohydrodynamics with incompressible flows
    Khater, AH
    Moawad, SM
    Callebaut, DK
    PHYSICS OF PLASMAS, 2005, 12 (01) : 1 - 10