projected Runge-Kutta(R-K) method;
differential-algebraic equation(DAE);
constrained Hamiltonian system;
energy and constraint preservation;
constraint violation;
D O I:
暂无
中图分类号:
O241.8 [微分方程、积分方程的数值解法];
学科分类号:
摘要:
Projected Runge-Kutta(R-K) methods for constrained Hamiltonian systems are proposed.Dynamic equations of the systems,which are index-3 differential-algebraic equations(DAEs) in the Heisenberg form,are established under the framework of Lagrangian multipliers.R-K methods combined with the technique of projections are then used to solve the DAEs.The basic idea of projections is to eliminate the constraint violations at the position,velocity,and acceleration levels,and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position,velocity,acceleration,and energy.Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
机构:
Univ Paris 06, CNRS, Lab Mineral Cristallog, UMR7590,IPGP, F-75252 Paris 05, FranceUniv Paris 06, CNRS, Lab Mineral Cristallog, UMR7590,IPGP, F-75252 Paris 05, France
机构:
Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Civil Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
Univ So Calif, Dept Informat & Operat Management, Los Angeles, CA 90089 USAUniv So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
Udwadia, Firdaus E.
Farahani, Artin
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USAUniv So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
机构:
Univ Johannesburg, Dept Appl Math, POB 524, ZA-2006 Johannesburg, South AfricaUniv Johannesburg, Dept Appl Math, POB 524, ZA-2006 Johannesburg, South Africa