High-Efficiency Reduction of Rice Amylose Content via CRISPR/Cas9-Mediated Base Editing

被引:0
|
作者
LI He [1 ]
LI Xiufeng [2 ]
XU Yang [3 ]
LIU Hualong [4 ]
HE Mingliang [2 ]
TIAN Xiaojie [2 ]
WANG Zhenyu [2 ]
WU Xiuju [1 ]
BU Qingyun [2 ]
YANG Jie [3 ]
机构
[1] College of Life Science, Northeast Agricultural University
[2] Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences
[3] Institute of Food Crops, Jiangsu Academy of Agricultural Sciences
[4] Rice Research Institute, College of Agriculture, Northeast Agricultural
关键词
D O I
暂无
中图分类号
S511 [稻]; Q943.2 [植物基因工程];
学科分类号
摘要
<正>Rice is a staple food for more than half of the human population. It has been estimated that by 2030, rice production must increase by 40%to meet the growing demand (Khush,2005). In addition, with the improvement of people’s living standards, the demand for elite rice with better eating and cooking quality (ECQ) is increasing. ECQ is determined by several factors, including amylose content (AC), gel consistency(GC), gelatinization temperature (GT) and viscosity, where AC is the predominant factor (Juliano, 1998).
引用
收藏
页码:445 / 448
页数:4
相关论文
共 50 条
  • [41] CRISPR–Cas9-mediated genome editing and guide RNA design
    Michael V. Wiles
    Wenning Qin
    Albert W. Cheng
    Haoyi Wang
    Mammalian Genome, 2015, 26 : 501 - 510
  • [42] Optimizing CRISPR/Cas9-mediated Genome Editing in Vitis.
    Sardaru, Papaiah
    Jackson, C.
    Junior, A.
    Khatabi, B.
    Dai, X.
    Zhao, Y.
    Dhekney, S. A.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2022, 58 (SUPPL 1) : S23 - S23
  • [43] CRISPR/Cas9-mediated noncoding RNA editing in human cancers
    Yang, Jie
    Meng, Xiaodan
    Pan, Jinchang
    Jiang, Nan
    Zhou, Chengwei
    Wu, Zhenhua
    Gong, Zhaohui
    RNA BIOLOGY, 2018, 15 (01) : 35 - 43
  • [44] Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants
    Lee, Jun Hyung
    Mazarei, Mitra
    Pfotenhauer, Alexander C.
    Dorrough, Aubrey B.
    Poindexter, Magen R.
    Hewezi, Tarek
    Lenaghan, Scott C.
    Graham, David E.
    Stewart, C. Neal, Jr.
    FRONTIERS IN PLANT SCIENCE, 2020, 10
  • [45] CRISPR/Cas9-mediated genome editing in diploid and tetraploid potatoes
    Aneela Yasmeen
    Allah Bakhsh
    Sara Ajmal
    Momna Muhammad
    Sahar Sadaqat
    Muhammad Awais
    Saira Azam
    Ayesha Latif
    Naila Shahid
    Abdul Qayyum Rao
    Acta Physiologiae Plantarum, 2023, 45
  • [46] CRISPR/Cas9-Mediated Gene Editing for Huntington's Disease
    Vachey, Gabriel
    Merienne, Nicolas
    de Longprez, Lucie
    Meunier, Cecile
    Buron, Julie
    Donat, Toscan
    Ouared, Allaeddine
    Stibolt, Celine
    Kocher, Juliane
    Ferreira, Antonio Santos
    Pellerin, Luc
    Brouillet, Emmanuel
    Perrier, Anselme
    du Pasquier, Renaud
    Deglon, Nicole
    MOLECULAR THERAPY, 2018, 26 (05) : 265 - 266
  • [47] Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium
    Muramoto, Tetsuya
    Iriki, Hoshie
    Watanabe, Jun
    Kawata, Takefumi
    CELLS, 2019, 8 (01)
  • [48] Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing
    Denes, Christopher E.
    Cole, Alexander J.
    Aksoy, Yagiz Alp
    Li, Geng
    Neely, Graham Gregory
    Hesselson, Daniel
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [49] CRISPR/Cas9-Mediated Multiplexed Genome Editing in Aspergillus oryzae
    Li, Qinghua
    Lu, Jinchang
    Zhang, Guoqiang
    Zhou, Jingwen
    Li, Jianghua
    Du, Guocheng
    Chen, Jian
    JOURNAL OF FUNGI, 2023, 9 (01)
  • [50] CRISPR/Cas9-mediated genome editing in mice: achievable and challenge
    Wu, Lin
    Chen, Laurie
    Chen, Ying
    Wang, Zhenjuan
    Johnson, Sarah
    TRANSGENIC RESEARCH, 2022, 31 (SUPPL 1) : 26 - 27