THE AUTOMORPHISM GROUP OF GENERALIZED REED-MULLER CODES

被引:30
|
作者
BERGER, T
CHARPIN, P
机构
[1] INRIA,DOMAINE VOLUCEAU,ROCQUENCOURT,BP 105,F-78153 LE CHESNAY,FRANCE
[2] UFR SCI LIMOGES,F-87060 LIMOGES,FRANCE
关键词
D O I
10.1016/0012-365X(93)90321-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the automorphism group of Generalized Reed-Muller codes is the general linear nonhomogeneous group. The Generalized Reed-Muller codes are introduced by Kasami, Lin and Peterson. An extensive study was made by Delsarte, Goethals and Mac-Williams; our result follows their description of the minimum weight codewords. An automorphism of a cyclic q-ary code is here a substitution over the field GF(q(m)). In the more general case where the automorphisms are defined by monomial matrices, we also obtain the automorphism group (called the monomial group) as the direct product of the general linear nonhomogeneous group with the multiplicative group of the alphabet field.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Pons, Reed-Muller codes, and group algebras
    An, M
    Byrnes, J
    Moran, W
    Saffari, B
    Shapiro, HS
    Tolimieri, R
    COMPUTATIONAL NONCOMMUTATIVE ALGEBRA AND APPLICATIONS, 2004, 136 : 155 - 196
  • [22] Perfect mixed codes from generalized Reed-Muller codes
    Romanov, Alexander M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (06) : 1747 - 1759
  • [23] Generalized Reed-Muller codes and curves with many points
    van der Geer, G
    van der Vlugt, M
    JOURNAL OF NUMBER THEORY, 1998, 72 (02) : 257 - 268
  • [24] Second weight codewords of generalized Reed-Muller codes
    Elodie Leducq
    Cryptography and Communications, 2013, 5 : 241 - 276
  • [25] Second weight codewords of generalized Reed-Muller codes
    Leducq, Elodie
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2013, 5 (04): : 241 - 276
  • [26] Erratum to: On the second weight of generalized Reed-Muller codes
    Olav Geil
    Designs, Codes and Cryptography, 2014, 73 : 267 - 267
  • [27] A note on the generalized Hamming weights of Reed-Muller codes
    Beelen, Peter
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (03) : 233 - 242
  • [28] Efficient decoding algorithms for generalized Reed-Muller codes
    Paterson, KG
    Jones, AE
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2000, 48 (08) : 1272 - 1285
  • [29] PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 125 - 129
  • [30] Testing Reed-Muller codes
    Alon, N
    Kaufman, T
    Krivelevich, M
    Litsyn, S
    Ron, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 4032 - 4039