NONHOMOGENEOUS FRACTIONAL BURGERS EQUATION

被引:2
|
作者
Buesaquillo, Victor G. [1 ]
Perez, Alejandro [2 ]
Rugeles, Alvaro [1 ]
机构
[1] Univ Narino, Dept Fis, Pasto, Colombia
[2] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico
来源
MOMENTO-REVISTA DE FISICA | 2016年 / 52期
关键词
Burgers equation; fractional calculus;
D O I
10.15446/mo.n52.58889
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this article we study solutions of the nonlinear fractional Burgers equation with a nonhomogeneous term associated with external forces. This equation is a generalization of the nonhomogeneous diffusion equation with an additional term that describes a nonlocal nonlinearity by means of a fractional order derivative of Caputo type. By using a generalized Cole-Hopf transformation, the fractional Burgers equation is mapped to a linear partial differential equation, this formalism allows to deduce analytical solutions. We explore the effects related to the nonhomogeneous term and the order of the fractional derivative.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 50 条
  • [41] EVENTUAL REGULARIZATION OF THE SLIGHTLY SUPERCRITICAL FRACTIONAL BURGERS EQUATION
    Chan, Chi Hin
    Czubak, Magdalena
    Silvestre, Luis
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (02) : 847 - 861
  • [42] Stochastic Burgers' equation driven by fractional Brownian motion
    Wang, Guolian
    Zeng, Ming
    Guo, Boling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 210 - 222
  • [43] The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation
    Yan, Tong
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 359 - 379
  • [44] Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative
    Singh, Harvindra
    Mittal, A. K.
    Balyan, L. K.
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (02) : 409 - 424
  • [45] SOLVABILIT OF FRACTIONAL ANALOGUES OF THE NEUMANN PROBLEM FOR A NONHOMOGENEOUS BIHARMONIC EQUATION
    Turmetov, Batirkhan Kh.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [46] Optimal control of a nonhomogeneous Dirichlet boundary fractional diffusion equation
    Dorville, Rene
    Mophou, Gisele M.
    Valmorin, Vincent S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1472 - 1481
  • [47] On the Solution of Fractional Burgers' Equation and Its Optimal Control Problem
    Svetlin G.Georgiev
    Fatemeh Mohammadizadeh
    Hojjat A.Tehrani
    M.H.Noori Skandari
    Analysis in Theory and Applications, 2019, (04) : 405 - 420
  • [48] NUMERICAL SOLUTIONS OF THE FRACTIONAL KdV-BURGERS-KURAMOTO EQUATION
    Kaya, Dogan
    Gulbahar, Sema
    Yokus, Asif
    THERMAL SCIENCE, 2018, 22 : S153 - S158
  • [49] An efficient numerical technique for solving time fractional Burgers equation
    Akram, Tayyaba
    Abbas, Muhammad
    Riaz, Muhammad Bilal
    Ismail, Ahmad Izani
    Ali, Norhashidah Mohd
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2201 - 2220
  • [50] A Crank-Nicolson Approximation for the time Fractional Burgers Equation
    Onal, M.
    Esen, A.
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (02) : 177 - 184