STOCHASTIC RUNGE-KUTTA ALGORITHMS .1. WHITE-NOISE

被引:393
|
作者
HONEYCUTT, RL
机构
[1] David Taylor Research Center, Bethesda
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 02期
关键词
D O I
10.1103/PhysRevA.45.600
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A higher-order algorithm for the numerical integration of one-variable, additive, white-noise equations is developed. The method of development is to extend standard deterministic Runge-Kutta algorithms to include stochastic terms. The ability of the algorithm to generate proper correlation properties is tested on the Omstein-Uhlenbeck process, showing higher accuracy even with longer step size.
引用
收藏
页码:600 / 603
页数:4
相关论文
共 50 条
  • [31] Stabilized starting algorithms for collocation Runge-Kutta methods
    González-Pinto, S
    Montijano, JI
    Pérez-Rodríguez, SP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 411 - 428
  • [32] High strong order stochastic Runge-Kutta methods for Stratonovich stochastic differential equations with scalar noise
    Aiguo Xiao
    Xiao Tang
    Numerical Algorithms, 2016, 72 : 259 - 296
  • [33] Industrial applications of high order Runge-Kutta algorithms
    Buzuloiu, A
    Balan, T
    LARGE SCALE SYSTEMS: THEORY AND APPLICATIONS 1998 (LSS'98), VOL 1, 1999, : 393 - 397
  • [34] RUNGE-KUTTA SCHEMES FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Chassagneux, Jean-Francois
    Crisan, Dan
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (02): : 679 - 720
  • [35] High strong order stochastic Runge-Kutta methods for Stratonovich stochastic differential equations with scalar noise
    Xiao, Aiguo
    Tang, Xiao
    NUMERICAL ALGORITHMS, 2016, 72 (02) : 259 - 296
  • [36] A stepsize control algorithm for SDEs with small noise based on stochastic Runge-Kutta Maruyama methods
    Valinejad, A.
    Hosseini, S. Mohammad
    NUMERICAL ALGORITHMS, 2012, 61 (03) : 479 - 498
  • [37] High-order stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with additive noise
    Han, Minggang
    Ma, Qiang
    Ding, Xiaohua
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 575 - 593
  • [38] Nonlinear stabili ty issues for stochastic Runge-Kutta methods
    D'Ambrosio, Raffaele
    Di Giovacchino, Stefano
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 94
  • [39] Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
    Li, Xuechen
    Wu, Denny
    Mackey, Lester
    Erdogdu, Murat A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [40] Efficient Runge-Kutta solver for stochastic crack growth analysis
    Gomes, Wellison Jose de Santana
    Beck, Andre Teofilo
    Garmbis, Alexandre Galiani
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 74