An improved lower bound for domination numbers of the Queen's graph

被引:0
|
作者
Finozhenok, Dmitry [1 ]
Weakley, William D. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2007年 / 37卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The queen's graph Q(n) has the squares of the n x n chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal. Let gamma(Q(n)) be the minimum size of a dominating set of Q(n) It has been proved that gamma(Q(n)) >= (n - 1)/2 for all n. Known dominating sets imply that gamma(Q(n)) = (n - 1)/2 for n = 3,11. We show that gamma(Q(n)) = (n - 1)/2 only for n = 3,11, and thus that gamma(Q(n)) >= inverted right perpendicular n/2 inverted left perpendicular for all other positive integers n.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [21] A Lower Bound for the Algebraic Connectivity of a Graph in Terms of the Domination Number
    Yi-Zheng FAN
    Ying-Ying TAN
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 752 - 760
  • [22] An improved upper bound for signed edge domination numbers in graphs
    Karami, H.
    Khodkar, Abdollah
    Sheikholeslami, S. M.
    UTILITAS MATHEMATICA, 2009, 78 : 121 - 128
  • [23] A Lower Bound for the Algebraic Connectivity of a Graph in Terms of the Domination Number
    Fan, Yi-Zheng
    Tan, Ying-Ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 752 - 760
  • [24] AN IMPROVED LOWER BOUND ON MULTICOLOR RAMSEY NUMBERS
    Wigderson, Yuval
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (06) : 2371 - 2374
  • [25] An improved lower bound for competitive graph exploration
    Birx, Alexander
    Disser, Yann
    Hopp, Alexander V.
    Karousatou, Christina
    THEORETICAL COMPUTER SCIENCE, 2021, 868 : 65 - 86
  • [26] An improved lower bound on the independence number of a graph
    Henning, Michael A.
    Loewenstein, Christian
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 120 - 128
  • [27] On domination numbers of graph bundles
    Zmazek B.
    Žerovnik J.
    J. Appl. Math. Comp., 2006, 1-2 (39-48): : 39 - 48
  • [28] DOMINATION NUMBERS ON THE BOOLEAN FUNCTION GRAPH OF A GRAPH
    Janakiraman, T. N.
    Muthammai, S.
    Bhanumathi, M.
    MATHEMATICA BOHEMICA, 2005, 130 (02): : 135 - 151
  • [29] On the Forcing Domination and the Forcing Total Domination Numbers of a Graph
    John, J.
    Flower, V. Sujin
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [30] On the Forcing Domination and the Forcing Total Domination Numbers of a Graph
    J. John
    V. Sujin Flower
    Graphs and Combinatorics, 2022, 38