An improved lower bound for domination numbers of the Queen's graph

被引:0
|
作者
Finozhenok, Dmitry [1 ]
Weakley, William D. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2007年 / 37卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The queen's graph Q(n) has the squares of the n x n chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal. Let gamma(Q(n)) be the minimum size of a dominating set of Q(n) It has been proved that gamma(Q(n)) >= (n - 1)/2 for all n. Known dominating sets imply that gamma(Q(n)) = (n - 1)/2 for n = 3,11. We show that gamma(Q(n)) = (n - 1)/2 only for n = 3,11, and thus that gamma(Q(n)) >= inverted right perpendicular n/2 inverted left perpendicular for all other positive integers n.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [1] Upper bounds for domination numbers of the queen's graph
    Weakley, WD
    DISCRETE MATHEMATICS, 2002, 242 (1-3) : 229 - 243
  • [2] Improved lower bounds for Queen's Domination via a relaxation
    Karandikar, Archit
    Dutta, Akashnil
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [3] Domination of the rectangular queen's graph
    Bozoki, Sandor
    Gal, Peter
    Marosi, Istvan
    Weakley, William D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):
  • [4] A new lower bound on the domination number of a graph
    Hajian, Majid
    Henning, Michael A.
    Rad, Nader Jafari
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 721 - 738
  • [5] A new lower bound on the domination number of a graph
    Majid Hajian
    Michael A. Henning
    Nader Jafari Rad
    Journal of Combinatorial Optimization, 2019, 38 : 721 - 738
  • [6] An improved upper bound for queens domination numbers
    Burger, AP
    Mynhardt, CM
    DISCRETE MATHEMATICS, 2003, 266 (1-3) : 119 - 131
  • [7] A lower bound on the total signed domination numbers of graphs
    Xin-zhong Lu
    Science in China Series A: Mathematics, 2007, 50 : 1157 - 1162
  • [8] A lower bound on the total signed domination numbers of graphs
    Lu, Xin-zhong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (08): : 1157 - 1162
  • [9] Upper bounds for domination numbers of the queen's graph (vol 242, pg 229, 2002)
    Weakley, WD
    DISCRETE MATHEMATICS, 2004, 277 (1-3) : 321 - 321
  • [10] A lower bound on the total signed domination numbers of graphs
    Xin-zhong LU Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2007, (08) : 1157 - 1162