MINIMIZATION PROBLEMS FOR NONCOERCIVE FUNCTIONALS SUBJECT TO CONSTRAINTS

被引:21
|
作者
LE, VK
SCHMITT, K
机构
关键词
MINIMIZATION OF FUNCTIONALS; CRITICAL POINT THEOREMS; NONCOERCIVE FUNCTIONALS; NONLINEAR BOUNDARY VALUE PROBLEMS; P-LAPLACIAN;
D O I
10.2307/2155048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider noncoercive functionals on a reflexive Banach space and establish minimization theorems for such functionals on smooth constraint manifolds. These results in turn yield critical point theorems for certain classes of homogeneous functionals. Several applications to the study of boundary value problems for quasilinear elliptic equations are included.
引用
收藏
页码:4485 / 4513
页数:29
相关论文
共 50 条
  • [31] Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints
    Marcelli, Cristina
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (10) : 5201 - 5227
  • [32] W01,1 minima of noncoercive functionals
    Boccardo, Lucio
    Croce, Gisella
    Orsina, Luigi
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (04) : 513 - 523
  • [33] Iterative Schemes for Convex Minimization Problems with Constraints
    Ceng, Lu-Chuan
    Liao, Cheng-Wen
    Pang, Chin-Tzong
    Wen, Ching-Feng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [34] CHARACTERIZATION OF MINIMAL ELEMENTS IN MINIMIZATION PROBLEMS WITH CONSTRAINTS
    BROSOWSKI, B
    WUYTACK, L
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1978, 24 (04) : 549 - 567
  • [35] A minimization algorithm for equilibrium problems with polyhedral constraints
    Cruz Neto, J. X.
    Lopes, J. O.
    Soares, P. A., Jr.
    OPTIMIZATION, 2016, 65 (05) : 1061 - 1068
  • [36] Some Properties of General Minimization Problems with Constraints
    Vy K. Le
    Dumitru Motreanu
    Set-Valued Analysis, 2006, 14 : 413 - 424
  • [37] ON THE MINIMIZATION OF A QUASI-CONCAVE FUNCTION SUBJECT TO LINEAR CONSTRAINTS
    GARCIAPALOMARES, U
    COLMENARES, W
    OPERATIONS RESEARCH LETTERS, 1991, 10 (03) : 137 - 141
  • [38] Some properties of general minimization problems with constraints
    Le, Vy K.
    Motreanu, Dumitru
    SET-VALUED ANALYSIS, 2006, 14 (04): : 413 - 424
  • [39] Noncoercive optimization problems
    Auslender, A
    MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (04) : 769 - 782
  • [40] On noncoercive elliptic problems
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23