PARAMETER-ELLIPTIC PROBLEMS AND INTERPOLATION WITH A FUNCTION PARAMETER

被引:0
|
作者
Anop, Anna V. [1 ]
Murach, Aleksandr A. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, 3 Tereshchenkivska, UA-01601 Kiev, Ukraine
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2014年 / 20卷 / 02期
关键词
Parameter-elliptic boundary-value problem; interpolation with a function parameter; RO-varying function; Hormander space; extended Sobolev scale; isomorphism property; a priori estimate for solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parameter-elliptic boundary-value problems are investigated on the extended Sobolev scale. This scale consists of all Hilbert spaces that are interpolation spaces with respect to a Hilbert Sobolev scale. The latter are the Hormander spaces B-2,k for which the smoothness index k is an arbitrary radial function RO-varying at +infinity. We prove that the operator corresponding to this problem sets isomorphisms between appropriate Hormander spaces provided the absolute value of the parameter is large enough. For solutions to the problem, we establish two-sided estimates, in which the constants are independent of the parameter.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 50 条
  • [31] Continuous dependence on a parameter of the countable fractal interpolation function
    Secelean, Nicolae-Adrian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2011, 27 (01) : 131 - 141
  • [32] Eigenvalue Asymptotics for the Non-Selfadjoint Operator Induced by a Parameter-Elliptic Multi-Order Boundary Problem
    Faierman, M.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (01) : 25 - 42
  • [33] ADAPTIVE FEM FOR PARAMETER-ERRORS IN ELLIPTIC LINEAR-QUADRATIC PARAMETER ESTIMATION PROBLEMS*
    Becker, Roland
    Innerberger, Michael
    Praetorius, Dirk
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) : 1450 - 1471
  • [34] INTERPOLATION WITH A PARAMETER FUNCTION AND INTEGRABLE FUNCTION SPACES WITH RESPECT TO VECTOR MEASURES
    del Campo, Ricardo
    Fernandez, Antonio
    Manzano, Antonio
    Mayoral, Fernando
    Naranjo, Francisco
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 707 - 720
  • [35] A NEW REGULARIZATION METHOD FOR PARAMETER-IDENTIFICATION IN ELLIPTIC PROBLEMS
    TAUTENHAHN, U
    INVERSE PROBLEMS, 1990, 6 (03) : 465 - 477
  • [36] SOLUTIONS TO ELLIPTIC BOUNDARY-VALUE PROBLEMS DEPENDING ON A PARAMETER
    BERG, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 24 (03) : 323 - 328
  • [37] A coupled complex boundary method for parameter identification in elliptic problems
    Zheng, Xuan
    Cheng, Xiaoliang
    Gong, Rongfang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (05) : 998 - 1015
  • [38] GLOBAL ANALYSIS OF 2-PARAMETER ELLIPTIC EIGENVALUE PROBLEMS
    PEITGEN, HO
    SCHMITT, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 283 (01) : 57 - 95
  • [39] A coupled complex boundary method for parameter identification in elliptic problems
    Zheng, Xuan
    Cheng, Xiaoliang
    Gong, Rongfang
    Zheng, Xuan (xuanzheng@csuft.edu.cn), 1600, Taylor and Francis Ltd. (97): : 998 - 1015
  • [40] An evolutionary algorithm for solving parameter identification problems in elliptic systems
    Wu, ZJ
    Tang, ZL
    Zou, J
    Kang, LS
    Li, MB
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 803 - 808