PARAMETER-ELLIPTIC PROBLEMS AND INTERPOLATION WITH A FUNCTION PARAMETER

被引:0
|
作者
Anop, Anna V. [1 ]
Murach, Aleksandr A. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, 3 Tereshchenkivska, UA-01601 Kiev, Ukraine
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2014年 / 20卷 / 02期
关键词
Parameter-elliptic boundary-value problem; interpolation with a function parameter; RO-varying function; Hormander space; extended Sobolev scale; isomorphism property; a priori estimate for solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parameter-elliptic boundary-value problems are investigated on the extended Sobolev scale. This scale consists of all Hilbert spaces that are interpolation spaces with respect to a Hilbert Sobolev scale. The latter are the Hormander spaces B-2,k for which the smoothness index k is an arbitrary radial function RO-varying at +infinity. We prove that the operator corresponding to this problem sets isomorphisms between appropriate Hormander spaces provided the absolute value of the parameter is large enough. For solutions to the problem, we establish two-sided estimates, in which the constants are independent of the parameter.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 50 条