TIME-DEPENDENT SOLUTION OF MULTIDIMENSIONAL FOKKER-PLANCK EQUATIONS IN THE WEAK NOISE LIMIT

被引:8
|
作者
GANG, H [1 ]
机构
[1] BEIJING NORMAL UNIV, DEPT PHYS, BEIJING, PEOPLES R CHINA
来源
关键词
D O I
10.1088/0305-4470/22/4/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:365 / 377
页数:13
相关论文
共 50 条
  • [21] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: PLENARY AND SPECIAL SESSIONS ACCELERATORS AND STORAGE RINGS - BEAM DYNAMICS, INSTRUMENTATION, AND CONTROLS, 1998, : 1825 - 1827
  • [22] Mean field games in the weak noise limit : A WKB approach to the Fokker-Planck equation
    Bonnemain, Thibault
    Ullmo, Denis
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 310 - 325
  • [23] Existence and uniqueness of solutions for forward and backward nonlocal Fokker-Planck equations with time-dependent coefficients
    Meng, Qingyan
    Wang, Yejuan
    Kloeden, Peter E.
    Han, Xiaoying
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 403 : 1 - 28
  • [24] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PHYSICA D, 1998, 113 (2-4): : 379 - 381
  • [25] Approximate time-dependent solution of Fokker-Planck equation with non-linear drift force
    Yang Hui-Hui
    Ning Li-Juan
    ACTA PHYSICA SINICA, 2013, 62 (18)
  • [26] Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems
    Kang, Yan-Mei
    PHYSICS LETTERS A, 2016, 380 (39) : 3160 - 3166
  • [27] Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving
    Heinsalu, E.
    Patriarca, M.
    Goychuk, I.
    Haenggi, P.
    PHYSICAL REVIEW LETTERS, 2007, 99 (12)
  • [28] FOKKER-PLANCK EQUATION FOR TIME-DEPENDENT DOUBLE-WELL POTENTIALS
    UPADHYAY, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (21): : L1293 - L1297
  • [29] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [30] FOKKER-PLANCK SOLUTION FOR THERMAL NOISE IN JOSEPHSON JUNCTIONS
    KADLEC, J
    FAHRMEIR, L
    GOLBACH, K
    PHYSICA B & C, 1977, 92 (02): : 261 - 263