Principal Component Regression by Principal Component Selection

被引:14
|
作者
Lee, Hosung [1 ]
Park, Yun Mi [1 ]
Lee, Seokho [1 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Stat, 81 Oedae Ro, Seoul 449791, South Korea
关键词
Biased estimation; dimension reduction; penalized regression; principal component regression; principal component selection;
D O I
10.5351/CSAM.2015.22.2.173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a selection procedure of principal components in principal component regression. Our method selects principal components using variable selection procedures instead of a small subset of major principal components in principal component regression. Our procedure consists of two steps to improve estimation and prediction. First, we reduce the number of principal components using the conventional principal component regression to yield the set of candidate principal components and then select principal components among the candidate set using sparse regression techniques. The performance of our proposals is demonstrated numerically and compared with the typical dimension reduction approaches (including principal component regression and partial least square regression) using synthetic and real datasets.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [22] Bootstrapping principal component regression models
    Wehrens, R
    VanderLinden, WE
    JOURNAL OF CHEMOMETRICS, 1997, 11 (02) : 157 - 171
  • [23] Principal component regression analysis with SPSS
    Liu, RX
    Kuang, J
    Gong, Q
    Hou, XL
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2003, 71 (02) : 141 - 147
  • [24] A note on kernel principal component regression
    Antoni Wibowo
    Yoshitsugu Yamamoto
    Computational Mathematics and Modeling, 2012, 23 (3) : 350 - 367
  • [25] Uncertainty quantification for principal component regression
    Wu, Suofei
    Hannig, Jan
    Lee, Thomas C. M.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2157 - 2178
  • [26] Elastic functional principal component regression
    Tucker, J. Derek
    Lewis, John R.
    Srivastava, Anuj
    STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (02) : 101 - 115
  • [27] Objective Function Selection for Array Optimization Using Principal Component Regression
    Xi, Ze
    Wang, Xiangang
    Luo, Xiaowei
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [28] Entropy-Based Model Selection Based on Principal Component Regression
    Satoh, Masaki
    Wu, Xiao Lin
    Miura, Takao
    2018 5TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC, AND SOCIO-CULTURAL COMPUTING (BESC), 2018, : 121 - 125
  • [29] Stock selection with principal component analysis
    Yang, Libin
    Rea, William
    Rea, Alethea
    JOURNAL OF INVESTMENT STRATEGIES, 2016, 5 (02): : 35 - 55
  • [30] Hybrid principal component regression estimation in linear regression
    Rong, Jian-Ying
    Liu, Xu-Qing
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3758 - 3776