Budan-Fourier's theorem

被引:4
|
作者
Hurwitz, A
机构
关键词
D O I
10.1007/BF01456810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:584 / 591
页数:8
相关论文
共 50 条
  • [31] Marcinkiewicz's theorem on operator multipliers of Fourier series
    Dostanic, MR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 391 - 396
  • [32] An Analog of Titchmarsh’s Theorem for the Fourier–Walsh Transform
    S. S. Platonov
    Mathematical Notes, 2018, 103 : 96 - 103
  • [33] A Fourier multiplier theorem
    不详
    WEIGHTED LITTLEWOOD-PALEY THEORY AND EXPONENTIAL-SQUARE INTEGRABILITY, 2008, 1924 : 197 - 202
  • [34] Budan—Fourier定理的推广及其在方程求根中的应用
    黄南洋
    数值计算与计算机应用, 1992, (01) : 44 - 50
  • [35] An application of Chen's theorem to convergence of Fourier multiplier transforms
    SHI Xian-liang
    CHEN Yang
    HU Lan
    Applied Mathematics:A Journal of Chinese Universities, 2013, (04) : 455 - 464
  • [36] An application of Chen's theorem to convergence of Fourier multiplier transforms
    Shi Xian-liang
    Chen Yang
    Hu Lan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 455 - 464
  • [37] BEURLING'S THEOREM FOR THE Q-FOURIER-DUNKL TRANSFORM
    Loualid, El Mehdi
    Achak, Azzedine
    Daher, Radouan
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (01): : 39 - 46
  • [38] On Fourier's inversion theorem in the context of nilpotent Lie groups
    Ludwig, Jean
    Molitor-Braun, Carine
    Scuto, Laurent
    ACTA SCIENTIARUM MATHEMATICARUM, 2007, 73 (3-4): : 547 - 591
  • [39] An application of Chen’s theorem to convergence of Fourier multiplier transforms
    Xian-liang Shi
    Yang Chen
    Lan Hu
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 455 - 464
  • [40] Revisiting Beurling's theorem for Fourier-Dunkl transform
    Parui, Sanjay
    Pusti, Sanjoy
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (09) : 687 - 699