COMPLETELY PRIME SUBMODULES

被引:0
|
作者
Groenewald, Nico J. [1 ]
Ssevviiri, David [1 ]
机构
[1] Nelson Mandela Metropolitan Univ, Dept Math & Appl Math, ZA-6031 Port Elizabeth, South Africa
关键词
completely prime submodules; completely prime radical of a module; special class of modules and multiplicative system of modules;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize completely prime ideals in rings to submodules in modules. The notion of multiplicative systems of rings is generalized to modules. Let N be a submodule of a left R-module M. Define co.root N := {m is an element of M : every multiplicative system containing m meets N}. It is shown that co.root N is equal to the intersection of all completely prime submodules of M containing N, beta(co) (N). We call beta(co) (M) = co.root 0 the completely prime radical of M. If R is a commutative ring, beta(co) (M) = beta(M) where beta(M) denotes the prime radical of M. beta(co) is a complete Hoehnke radical which is neither hereditary nor idempotent and hence not a Kurosh-Amistur radical. The torsion theory induced by beta(co) is discussed. The module radical beta(co) (R-R) and the ring radical beta(co) (R) are compared. We show that the class of all completely prime modules, R-M for which RM not equal 0 is special.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] On chains of prime submodules
    Man, SH
    Smith, PF
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 127 (1) : 131 - 155
  • [22] Unions of prime submodules
    Lu, CP
    HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (02): : 203 - 213
  • [23] STRONGLY PRIME SUBMODULES
    Naghipour, A. R.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) : 2193 - 2199
  • [24] ON ALMOST PRIME SUBMODULES
    Khashan, Hani A.
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 645 - 651
  • [25] ON ALMOST PRIME SUBMODULES
    Hani A.Khashan
    Acta Mathematica Scientia, 2012, 32 (02) : 645 - 651
  • [26] Prime modules and submodules
    Tiras, Y
    Alkan, M
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) : 5253 - 5261
  • [27] A characterization of prime submodules
    Tiras, Y
    Harmanci, A
    Smith, PF
    JOURNAL OF ALGEBRA, 1999, 212 (02) : 743 - 752
  • [28] Generalizations of prime submodules
    Moradi, S.
    Azizi, A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 587 - 595
  • [29] ON STRONGLY PRIME SUBMODULES
    Azizi, Abdulrasool
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 125 - 139
  • [30] φ-Classical Prime Submodules
    Mostafanasab, H.
    Ugurlu, E. Aslankarayigit
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (02) : 243 - 262