COMPLETELY PRIME SUBMODULES

被引:0
|
作者
Groenewald, Nico J. [1 ]
Ssevviiri, David [1 ]
机构
[1] Nelson Mandela Metropolitan Univ, Dept Math & Appl Math, ZA-6031 Port Elizabeth, South Africa
关键词
completely prime submodules; completely prime radical of a module; special class of modules and multiplicative system of modules;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize completely prime ideals in rings to submodules in modules. The notion of multiplicative systems of rings is generalized to modules. Let N be a submodule of a left R-module M. Define co.root N := {m is an element of M : every multiplicative system containing m meets N}. It is shown that co.root N is equal to the intersection of all completely prime submodules of M containing N, beta(co) (N). We call beta(co) (M) = co.root 0 the completely prime radical of M. If R is a commutative ring, beta(co) (M) = beta(M) where beta(M) denotes the prime radical of M. beta(co) is a complete Hoehnke radical which is neither hereditary nor idempotent and hence not a Kurosh-Amistur radical. The torsion theory induced by beta(co) is discussed. The module radical beta(co) (R-R) and the ring radical beta(co) (R) are compared. We show that the class of all completely prime modules, R-M for which RM not equal 0 is special.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] ON COMPLETELY PRIME SUBMODULES
    Ssevviiri, David
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2016, 19 : 77 - 90
  • [2] Classical completely prime submodules
    Groenewald, Nico J.
    Ssevviiri, David
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (03): : 717 - 729
  • [3] Weakly prime submodules and prime submodules
    Azizi, A.
    GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 343 - 346
  • [4] PRIME SUBMODULES
    MCCASLAND, RL
    MOORE, ME
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) : 1803 - 1817
  • [5] φ-PRIME SUBMODULES
    Zamani, Naser
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 253 - 259
  • [6] ON PRIME SUBMODULES
    Qiu, Yi
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 11 (01): : 47 - 58
  • [7] ON β-PRIME SUBMODULES
    Khumprapussorn, Thawatchai
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (02) : 128 - 138
  • [8] On prime submodules
    Alkan, Mustafa
    Tiras, Yuecel
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (03) : 709 - 722
  • [9] PRIME BASES OF WEAKLY PRIME SUBMODULES AND THE WEAK RADICAL OF SUBMODULES
    Nikseresht, Ashkan
    Azizi, Abdulrasool
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 1183 - 1198
  • [10] On Φ-powerful submodules and Φ-strongly prime submodules
    Khan, Waheed Ahmad
    Farid, Kiran
    Taouti, Abdelghani
    AIMS MATHEMATICS, 2021, 6 (10): : 11610 - 11619