SOME APPLICATIONS OF WEIL REPRESENTATION

被引:44
|
作者
KAZHDAN, D
机构
来源
关键词
D O I
10.1007/BF02803582
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [21] SOME PRACTICAL APPLICATIONS OF THE REPRESENTATION THEORY
    GIACOVAZZO, C
    BUSETTA, B
    BURLA, MC
    NUNZI, A
    POLIDORI, G
    SPAGNA, R
    VICKOVIC, I
    VITERBO, D
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1978, 34 : S42 - S42
  • [22] Computing the Weil representation of a superelliptic curve
    Bouw, Irene I.
    Do, Duc Khoi
    Wewers, Stefan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (04): : 708 - 727
  • [23] WEIL REPRESENTATION AND CHANGING OF THE QUADRATIC BASE
    COGNET, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1985, 113 (04): : 403 - 457
  • [24] The Lagrangian Radon Transform and the Weil Representation
    Marmo, Giuseppe
    Michor, Peter W.
    Neretin, Yury A.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (02) : 321 - 361
  • [25] Poincare square series for the Weil representation
    Williams, Brandon
    RAMANUJAN JOURNAL, 2018, 47 (03): : 605 - 650
  • [26] The Lagrangian Radon Transform and the Weil Representation
    Giuseppe Marmo
    Peter W. Michor
    Yury A. Neretin
    Journal of Fourier Analysis and Applications, 2014, 20 : 321 - 361
  • [27] Poincaré square series for the Weil representation
    Brandon Williams
    The Ramanujan Journal, 2018, 47 : 605 - 650
  • [28] Analogue of Weil representation for abelian schemes
    Polishchuk, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 543 : 1 - 37
  • [29] Weil representation and Arithmetic Fundamental Lemma
    Zhang, W.
    ANNALS OF MATHEMATICS, 2021, 193 (03) : 863 - 978
  • [30] The induced Weil representation and the Shalika period
    Mao, ZY
    Rallis, S
    PACIFIC JOURNAL OF MATHEMATICS, 1999, 191 (02) : 313 - 327