THE ELECTION OF THE BEST AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL TO FORECASTING RICE PRODUCTION IN INDONESIA

被引:2
|
作者
Tinungki, Georgina Maria [1 ]
机构
[1] Hasanuddin Univ, Fac Math & Nat Sci, Dept Math, Makassar 90245, Indonesia
关键词
agriculture; ARIMA model; rice production; time series model;
D O I
10.17654/AS052040251
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The objective of this research is to identify the best autoregressive integrated moving average (ARIMA) model for forecasting rice production in Indonesia. Rice crops are the most important agricultural commodity in Indonesia, because rice is the staple food of Indonesians. Therefore, the ability to forecast rice production is crucial. We used autoregressive integrated moving average (ARIMA) model to predict rice production in Indonesia. The data analyzed is the data of rice production in Indonesia from 1993 to 2012. The data of 2013 to 2015 got used to validate the forecasting results. The results show that the ARIMA model (2, 2, 0) is the best model for forecasting rice production in Indonesia.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 50 条
  • [21] Forecasting House Price Index for USA with Autoregressive Integrated Moving Average Models
    Shi Jiangang
    Zou Wei
    ADVANCES IN MANAGEMENT OF TECHNOLOGY, PT 1, 2009, : 590 - 594
  • [22] A Novel Hybrid Autoregressive Integrated Moving Average and Artificial Neural Network Model for Cassava Export Forecasting
    Warut Pannakkong
    Van-Nam Huynh
    Songsak Sriboonchitta
    International Journal of Computational Intelligence Systems, 2019, 12 : 1047 - 1061
  • [23] Forecasting the Price of Indonesia's Rice Using Hybrid Artificial Neural Network and Autoregressive Integrated Moving Average (Hybrid NNs-ARIMAX) with Exogenous Variables
    Anggraeni, Wiwik
    Mahananto, Faizal
    Sari, Ayusha Qamara
    Zaini, Zulkifli
    Andri, Kuntoro Boga
    Sumaryanto
    FIFTH INFORMATION SYSTEMS INTERNATIONAL CONFERENCE, 2019, 161 : 677 - 686
  • [24] A Novel Hybrid Autoregressive Integrated Moving Average and Artificial Neural Network Model for Cassava Export Forecasting
    Pannakkong, Warut
    Van-Nam Huynh
    Sriboonchitta, Songsak
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 1047 - 1061
  • [25] Forecasting Road Traffic Fatalities in Malaysia Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Model
    Sim, Ho Jen
    Chong, Choo Wei
    Abu Kassim, Khairil Anwar
    Mooi, Ching Siew
    Zhang Yuruixian
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2022, 30 (02): : 897 - 911
  • [26] Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model
    Zhang, Xujun
    Pang, Yuanyuan
    Cui, Mengjing
    Stallones, Lorann
    Xiang, Huiyun
    ANNALS OF EPIDEMIOLOGY, 2015, 25 (02) : 101 - 106
  • [27] Wind speed forecasting using autoregressive moving average/generalized autoregressive conditional heteroscedasticity model
    Jiang, Wen
    Yan, Zheng
    Feng, Dong-Han
    Hu, Zhi
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2012, 22 (05): : 662 - 673
  • [28] Long Term Electricity Demand Forecasting Using Autoregressive Integrated Moving Average Model: Case Study of Morocco
    Citroen, Noreddine
    Ouassaid, Mohammed
    Maaroufi, Mohamed
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES (ICEIT 2015), 2015, : 59 - 64
  • [29] Hotspots Forecasting Using Autoregressive Integrated Moving Average (ARIMA) for Detecting Forest Fires
    Slavia, Athaya Putri
    Sutoyo, Edi
    Witarsyah, Deden
    2019 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND INTELLIGENCE SYSTEM (IOTAIS), 2019, : 92 - 97
  • [30] Forecasting Construction Tender Price Index in Ghana using Autoregressive Integrated Moving Average with Exogenous Variables Model
    Kissi, Ernest
    Adjei-Kumi, Theophilus
    Amoah, Peter
    Gyimah, Jerry
    CONSTRUCTION ECONOMICS AND BUILDING, 2018, 18 (01): : 70 - 82