A scaling property of Farey fractions

被引:2
|
作者
Kunik, Matthias [1 ]
机构
[1] Univ Magdeburg, IAN, Gebaude 02,Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Farey sequences; Riemann zeta function; Mellin transform; Hardy spaces;
D O I
10.1007/s40879-016-0098-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Farey sequence of order n consists of all reduced fractions a/b between 0 and 1 with positive denominator b less than or equal to n. The sums of the inverse denominators 1/b of the Farey fractions in prescribed intervals with rational bounds have a simple main term, but the deviations are determined by an interesting sequence of polygonal functions f(n). For n -> infinity we also obtain a certain limit function, which describes an asymptotic scaling property of functions f(n) in the vicinity of any fixed fraction a/b and which is independent of a/b. The result can be obtained by using only elementary methods. We also study this limit function and especially its decay behaviour by using the Mellin transform and analytical properties of the Riemann zeta function.
引用
收藏
页码:383 / 417
页数:35
相关论文
共 50 条
  • [21] The von Mises theorem for farey fractions
    Šiaulys J.
    Lithuanian Mathematical Journal, 1999, 39 (3) : 336 - 347
  • [22] On the intervals of a third between Farey fractions
    Cobeli, Cristian
    Vajaitu, Marian
    Zaharescu, Alexandru
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2010, 53 (03): : 239 - 250
  • [23] FAREY-SUBGRAPHS AND CONTINUED FRACTIONS
    Kushwaha, Seema
    Sarma, Ritumoni
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2022, 59 (02) : 164 - 182
  • [24] A note on the pair correlation of Farey fractions
    Boca, Florin P.
    SIsKAKI, M. A. R. I. A.
    ACTA ARITHMETICA, 2022, : 121 - 135
  • [25] A DENSITY THEOREM ON EVEN FAREY FRACTIONS
    Cobeli, Cristian
    Vajaitu, Marian
    Zaharescu, Alexandru
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 55 (06): : 447 - 481
  • [26] APPROXIMATION OF IRRATIONALS WITH FAREY FIBONACCI FRACTIONS
    ALLADI, K
    FIBONACCI QUARTERLY, 1975, 13 (03): : 255 - 259
  • [27] NUMERATORS OF DIFFERENCES OF NONCONSECUTIVE FAREY FRACTIONS
    Haynes, Alan K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (03) : 655 - 666
  • [28] FAREY NETS AND MULTIDIMENSIONAL CONTINUED FRACTIONS
    GRABINER, DJ
    MONATSHEFTE FUR MATHEMATIK, 1992, 114 (01): : 35 - 60
  • [29] A note on Farey fractions with odd denominators
    Haynes, A
    JOURNAL OF NUMBER THEORY, 2003, 98 (01) : 89 - 104
  • [30] Constructing singular functions via Farey fractions
    Girgensohn, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (01) : 127 - 141