On the Expansion of Fibonacci and Lucas Polynomials

被引:0
|
作者
Prodinger, Helmut [1 ]
机构
[1] Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa
关键词
Fibonacci polynomials; Lucas polynomials; generating functions; q-analogues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials using bases of Fibonacci-and Lucas-like polynomials. Here, we provide simplified proofs for the expansion formulae that in essence a computer can do. Furthermore, for 2 of the 5 instances, we find q-analogues.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] REMAINDER FORMULAS INVOLVING GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
    GLASSON, AR
    FIBONACCI QUARTERLY, 1995, 33 (03): : 268 - 272
  • [42] Some identities involving Fibonacci, Lucas polynomials and their applications
    Wang Tingting
    Zhang Wenpeng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (01): : 95 - 103
  • [43] Incomplete Bivariate Fibonacci and Lucas p-Polynomials
    Tasci, Dursun
    Firengiz, Mirac Cetin
    Tuglu, Naim
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [44] SOME PROPERTIES OF BIVATIATE FIBONACCI AND LUCAS QUATERNION POLYNOMIALS
    Ozturk, Arzu Ozkoc
    Kaplan, Faruk
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 73 - 87
  • [45] Generalized Fibonacci and Lucas polynomials and multiplicative arithmetic functions
    MacHenry, T
    FIBONACCI QUARTERLY, 2000, 38 (02): : 167 - 173
  • [46] Multiple convolution formulae on bivariate fibonacci and lucas polynomials
    Chu, Wenchang
    Yan, Qinglun
    UTILITAS MATHEMATICA, 2007, 74 : 145 - 153
  • [47] COMBINATORIAL PROOFS OF DETERMINANT FORMULAS FOR THE FIBONACCI AND LUCAS POLYNOMIALS
    Shattuck, Mark
    FIBONACCI QUARTERLY, 2013, 51 (01): : 63 - 71
  • [48] Sums of powers of Fibonacci and Lucas polynomials in terms of Fibopolynomials
    Ruiz, Claudio de J. Pita, V
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 77 - 97
  • [49] Special transforms of the generalized bivariate Fibonacci and Lucas polynomials
    Yilmaz, Nazmiye
    Aktas, Ibrahim
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (03): : 640 - 651
  • [50] ON THE K(TH) DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS
    WANG, J
    FIBONACCI QUARTERLY, 1995, 33 (02): : 174 - 178