The Hurwitz continued fraction expansion as applied to real numbers

被引:2
|
作者
Simmons, David [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
来源
ENSEIGNEMENT MATHEMATIQUE | 2016年 / 62卷 / 3-4期
基金
英国工程与自然科学研究理事会;
关键词
Continued fraction expansion; Diophantine approximation;
D O I
10.4171/LEM/62-3/4-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz (1887) defined a continued fraction algorithm for complex numbers which is better behaved in many respects than a more "natural" extension of the classical continued fraction algorithm to the complex plane would be. Although the Hurwitz complex continued fraction algorithm is not "reducible" to another complex continued fraction algorithm, over the reals the story is different. In this note we make clear the relation between the restriction of Hurwitz's algorithm to the real numbers and the classical continued fraction algorithm. As an application we reprove the main result of Choudhuri and Dani (2015).
引用
收藏
页码:475 / 485
页数:11
相关论文
共 50 条
  • [41] Asymptotics for real monotone double Hurwitz numbers
    Ding, Yanqiao
    He, Qinhao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [42] On the lower bounds for real double Hurwitz numbers
    Ding, Yanqiao
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (02) : 525 - 546
  • [43] On the lower bounds for real double Hurwitz numbers
    Yanqiao Ding
    Journal of Algebraic Combinatorics, 2023, 57 : 525 - 546
  • [44] ON THE EXPANSION OF A CONTINUED FRACTION OF ORDER TWELVE
    Lin, Bernard L. S.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) : 2019 - 2031
  • [45] On framed simple purely real Hurwitz numbers
    Kazarian, M. E.
    Lando, S. K.
    Natanzon, S. M.
    IZVESTIYA MATHEMATICS, 2021, 85 (04) : 681 - 704
  • [46] On the period of the continued fraction expansion for √d
    Korolev, M. A.
    IZVESTIYA MATHEMATICS, 2025, 89 (01) : 26 - 49
  • [47] Oppenheim continued fraction expansion and Beta-expansion
    Feng, Yan
    Zhang, Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [48] Prime numbers in typical continued fraction expansions
    Schindler, Tanja I.
    Zweimueller, Roland
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2023, 16 (02): : 259 - 274
  • [49] On Absolutely Normal and Continued Fraction Normal Numbers
    Becher, Veronica
    Yuhjtman, Sergio A.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (19) : 6136 - 6161
  • [50] Prime numbers in typical continued fraction expansions
    Tanja I. Schindler
    Roland Zweimüller
    Bollettino dell'Unione Matematica Italiana, 2023, 16 : 259 - 274