A Characterisation of the Lines External to an Oval Cone in PG(3, q), q Even

被引:7
|
作者
Barwick, S. [1 ]
Butler, David [1 ]
机构
[1] Univ Adelaide, Sch Pure Math, Adelaide, SA 5005, Australia
关键词
Projective space; oval cone; lines; characterisation;
D O I
10.1007/s00022-009-1966-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the lines not meeting an oval cone in PG(3, q) ( q even) are characterised by their intersection properties with points and planes.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [21] Blocking sets of external lines to a conic in PG(2,q), q ODD
    Aguglia, Angela
    Korchmaros, Gabor
    COMBINATORICA, 2006, 26 (04) : 379 - 394
  • [22] Proper 2-covers of PG(3,q), q even
    Drudge, K
    GEOMETRIAE DEDICATA, 2000, 80 (1-3) : 59 - 64
  • [23] Proper 2-Covers of PG(3,q), q Even
    Keldon Drudge
    Geometriae Dedicata, 2000, 80 : 59 - 64
  • [24] On the size of a cap in PG(n, q) with q even and n≥3
    Chao, JM
    GEOMETRIAE DEDICATA, 1999, 74 (01) : 91 - 94
  • [25] MAXIMAL PARTIAL LINE SPREADS OF PG(3,q), q EVEN
    Tallini, Maria Scafati
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, (29): : 333 - 340
  • [26] On the Size of a Cap in PG(n,q) with q Even and n ≥ 3
    Jin-Ming Chao
    Geometriae Dedicata, 1999, 74 : 91 - 94
  • [27] A characterization of the set of lines either external to or secant to an ovoid in PG(3, q)
    Innamorati, Stefano
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 159 - 163
  • [28] Blocking sets of tangent and external lines to an elliptic quadric in PG(3,q)
    Bart De Bruyn
    Puspendu Pradhan
    Binod Kumar Sahoo
    Proceedings - Mathematical Sciences, 2021, 131
  • [29] Blocking sets of tangent and external lines to an elliptic quadric in PG(3,q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):
  • [30] Blocking sets of tangent and external lines to a hyperbolic quadric in PG(3, q)
    De Bruyn, Bart
    Sahoo, Binod Kumar
    Sahu, Bikramaditya
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2820 - 2826