LOCAL HETEROTIC GEOMETRY IN HOLOMORPHIC COORDINATES

被引:24
|
作者
BONNEAU, G
VALENT, G
机构
[1] Laboratoire de Physique Théorique et des Hautes Energies, Unité Associée Au CNRS URA 280, Université Paris 7, 75251 Paris Cedex 05
关键词
D O I
10.1088/0264-9381/11/5/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the same spirit as for N = 2 and N = 4 supersymmetric nonlinear sigma models in two spacetime dimensions by Zumino and by Alvarez-Gaume and Freedman, we analyse the (2, 0) and (4, 0) heterotic geometry in holomorphic coordinates. We study the properties of the torsion tensor and give the conditions under which (2, 0) geometry is conformally equivalent to a (2, 2) one. Using additional isometries, we show that it is difficult to equip a manifold with a closed torsion tensor, but for the real four-dimensional case where we exhibit new examples. We show that, contrarily to Callan et al's claim for real four-dimensional manifolds, (4, 0) heterotic geometry is not necessarily conformally equivalent to a (4,4) Kahler-Ricci flat geometry. We rather prove that, whatever the real dimension is, they are special quasi-Ricci flat spaces, and we exemplify our results on Eguchi-Hanson and Taub-NUT metrics with torsion.
引用
收藏
页码:1133 / 1154
页数:22
相关论文
共 50 条
  • [21] Two Dimensional Water Waves in Holomorphic Coordinates
    John K. Hunter
    Mihaela Ifrim
    Daniel Tataru
    Communications in Mathematical Physics, 2016, 346 : 483 - 552
  • [22] HOLOMORPHIC MOTIONS AND COMPLEX GEOMETRY
    Gaussier, Herve
    Seshadri, Harish
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (01) : 301 - 313
  • [23] Hessian geometry and the holomorphic anomaly
    G.L. Cardoso
    T. Mohaupt
    Journal of High Energy Physics, 2016
  • [24] Hessian geometry and the holomorphic anomaly
    Cardoso, G. L.
    Mohaupt, T.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02): : 1 - 36
  • [25] HOLOMORPHIC GEOMETRY OF INTERACTING STRINGS
    SAITO, T
    WU, K
    PHYSICS LETTERS B, 1988, 200 (1-2) : 31 - 34
  • [26] Local Heterotic Torsional Models
    Fu, Ji-Xiang
    Tseng, Li-Sheng
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (03) : 1151 - 1169
  • [27] Local Heterotic Torsional Models
    Ji-Xiang Fu
    Li-Sheng Tseng
    Shing-Tung Yau
    Communications in Mathematical Physics, 2009, 289 : 1151 - 1169
  • [28] Ubiquity of non-geometry in heterotic compactifications
    Garcia-Etxebarria, Inaki
    Luest, Dieter
    Massai, Stefano
    Mayrhofer, Christoph
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03):
  • [29] GEOMETRY OF SIGMA-MODELS WITH HETEROTIC SUPERSYMMETRY
    DELDUC, F
    KALITZIN, S
    SOKATCHEV, E
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (09) : 1567 - 1582
  • [30] The spinorial geometry of supersymmetric heterotic string backgrounds
    Gran, U
    Lohrmann, P
    Papadopoulos, G
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (02):