LOCAL HETEROTIC GEOMETRY IN HOLOMORPHIC COORDINATES

被引:24
|
作者
BONNEAU, G
VALENT, G
机构
[1] Laboratoire de Physique Théorique et des Hautes Energies, Unité Associée Au CNRS URA 280, Université Paris 7, 75251 Paris Cedex 05
关键词
D O I
10.1088/0264-9381/11/5/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the same spirit as for N = 2 and N = 4 supersymmetric nonlinear sigma models in two spacetime dimensions by Zumino and by Alvarez-Gaume and Freedman, we analyse the (2, 0) and (4, 0) heterotic geometry in holomorphic coordinates. We study the properties of the torsion tensor and give the conditions under which (2, 0) geometry is conformally equivalent to a (2, 2) one. Using additional isometries, we show that it is difficult to equip a manifold with a closed torsion tensor, but for the real four-dimensional case where we exhibit new examples. We show that, contrarily to Callan et al's claim for real four-dimensional manifolds, (4, 0) heterotic geometry is not necessarily conformally equivalent to a (4,4) Kahler-Ricci flat geometry. We rather prove that, whatever the real dimension is, they are special quasi-Ricci flat spaces, and we exemplify our results on Eguchi-Hanson and Taub-NUT metrics with torsion.
引用
收藏
页码:1133 / 1154
页数:22
相关论文
共 50 条
  • [1] HETEROTIC GEOMETRY
    NELSON, P
    MOORE, G
    NUCLEAR PHYSICS B, 1986, 274 (3-4) : 509 - 519
  • [2] On a local holomorphic version of the fundamental theorem of projective geometry
    Kruzhilin, N. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (06) : 1123 - 1125
  • [3] Holomorphic plumbing coordinates
    Earle, Clifford J.
    Marden, Albert
    QUASICONFORMAL MAPPINGS, RIEMANN SURFACES, AND TEICHMULLER SPACES, 2012, 575 : 41 - 52
  • [4] Extended Riemannian geometry II: local heterotic double field theory
    Deser, Andreas
    Heller, Marc Andre
    Samann, Christian
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [5] Extended Riemannian geometry II: local heterotic double field theory
    Andreas Deser
    Marc Andre Heller
    Christian Sämann
    Journal of High Energy Physics, 2018
  • [6] Holomorphic Yukawa couplings in heterotic string theory
    Blesneag, Stefan
    Buchbinder, Evgeny I.
    Candelas, Philip
    Lukas, Andre
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (01): : 1 - 51
  • [7] HOLOMORPHIC COORDINATES FOR SUPERMODULI SPACE
    NELSON, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (01) : 167 - 175
  • [8] Holomorphic Yukawa couplings in heterotic string theory
    Stefan Blesneag
    Evgeny I. Buchbinder
    Philip Candelas
    Andre Lukas
    Journal of High Energy Physics, 2016
  • [9] Local heterotic geometry and self-dual Einstein-Weyl spaces
    Tod, KP
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (10) : 2609 - 2616
  • [10] The Universal Geometry of heterotic vacua
    Candelas, Philip
    de la Ossa, Xenia
    McOrist, Jock
    Sisca, Roberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)