ON ESTIMATES OF THE APPROXIMATION NUMBERS OF THE HARDY OPERATOR

被引:0
|
作者
Lomakina, E. N. [1 ,2 ]
机构
[1] Khabarovsk State Univ Econ & Law, Dept Math & Math Methods Econ, 134 Tikhookeanskaya St, Khabarovsk 680042, Russia
[2] Far Eastern State Transport Univ, Dept Higher Math, Khabarovsk 680021, Russia
来源
EURASIAN MATHEMATICAL JOURNAL | 2015年 / 6卷 / 02期
关键词
Lebesgue space; Lorentz space; Hardy operator; approximation numbers; Schatten-von Neumann norm;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain two sided estimates which describe the behaviour of the approximation numbers of the Hardy operator and Schatten Neumann norms in the new case, when the compact operator Tf(x) = integral(x)(0) f(tau)dT, x> 0, acting from a Lebesgue space to a Lorentz space (T : L-v(r);,(R+) -> LPwpq (R+)) under the condition 1 < p < r <= q < infinity.
引用
收藏
页码:41 / 62
页数:22
相关论文
共 50 条