BANACH LATTICES OF COMPACT MAPS

被引:28
|
作者
CHANEY, J
机构
关键词
D O I
10.1007/BF01229536
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / &
相关论文
共 50 条
  • [21] ON WEAKLY COMPACT-OPERATORS ON BANACH-LATTICES
    ALIPRANTIS, CD
    BURKINSHAW, O
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (03) : 573 - 578
  • [22] Some characterizations of weakly compact operator on Banach lattices
    Belmesnaoui Aqzzouz
    Khalid Bouras
    Czechoslovak Mathematical Journal, 2011, 61 : 901 - 908
  • [24] Weakly compact sets and weakly compact pointwise multipliers in Banach function lattices
    Lesnik, Karol
    Maligranda, Lech
    Tomaszewski, Jakub
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (03) : 574 - 592
  • [25] Compact separating maps on continuous fields of Banach spaces
    Lin, Y. -F.
    Todorov, I. G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1221 - 1228
  • [26] The Order Properties of r-compact Operators on Banach Lattices
    A.W.WICKSTEAD
    Acta Mathematica Sinica(English Series), 2007, 23 (03) : 457 - 466
  • [27] Strictly singular and power-compact operators on Banach lattices
    Julio Flores
    Francisco L. Hernández
    Evgueni M. Semenov
    Pedro Tradacete
    Israel Journal of Mathematics, 2012, 188 : 323 - 352
  • [28] STRICTLY SINGULAR AND POWER-COMPACT OPERATORS ON BANACH LATTICES
    Flores, Julio
    Hernandez, Francisco L.
    Semenov, Evgueni M.
    Tradacete, Pedro
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) : 323 - 352
  • [29] On the duality property for semi-compact operators on Banach lattices
    Aqzzouz, Belmesnaoui
    Elbour, Aziz
    ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 513 - 524
  • [30] COMPACTNESS OF POSITIVE SEMI-COMPACT OPERATORS ON BANACH LATTICES
    Aqzzouz, B.
    Nouira, R.
    Zraoula, L.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2006, 55 (03) : 305 - 313