Q-DEFORMED PARACOMMUTATION RELATIONS

被引:3
|
作者
RALCHENKO, YV
机构
[1] Inst. of Spectrosc., Russian Acad. of Sci., Troitsk
来源
关键词
D O I
10.1088/0305-4470/25/19/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The representations of an algebra of q-deformed paracommutation relations are discussed. The Bose quantization is shown to be exceptional among all possible para-Bose quantizations. Also it is demonstrated that the Ignatiev and Kuzmin oscillator is a particular case of the q-deformed paraoscillator.
引用
收藏
页码:L1155 / L1158
页数:4
相关论文
共 50 条
  • [41] Q-DEFORMED JACOBI IDENTITY, Q-OSCILLATORS AND Q-DEFORMED INFINITE-DIMENSIONAL ALGEBRAS
    CHAICHIAN, M
    KULISH, P
    LUKIERSKI, J
    PHYSICS LETTERS B, 1990, 237 (3-4) : 401 - 406
  • [42] A q-deformed uncertainty relation
    Zhang, JZ
    PHYSICS LETTERS A, 1999, 262 (2-3) : 125 - 130
  • [43] On q-deformed hyponormal operators
    Ota, S
    MATHEMATISCHE NACHRICHTEN, 2003, 248 : 144 - 150
  • [44] Q-DEFORMED POINCARE ALGEBRA
    OGIEVETSKY, O
    SCHMIDKE, WB
    WESS, J
    ZUMINO, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) : 495 - 518
  • [45] A q-deformed nonlinear map
    Jaganathan, R
    Sinha, S
    PHYSICS LETTERS A, 2005, 338 (3-5) : 277 - 287
  • [46] Q-DEFORMED PAIRING VIBRATIONS
    SHARMA, SS
    SHARMA, NK
    PHYSICAL REVIEW C, 1994, 50 (05): : 2323 - 2331
  • [47] q-Deformed nonlinear maps
    Ramaswamy Jaganathan
    Sudeshna Sinha
    Pramana, 2005, 64 : 411 - 421
  • [48] On q-Deformed Real Numbers
    Morier-Genoud, Sophie
    Ovsienko, Valentin
    EXPERIMENTAL MATHEMATICS, 2022, 31 (02) : 652 - 660
  • [49] q-deformed Heisenberg algebras
    Wess, J
    GEOMETRY AND QUANTUM PHYSICS, 2000, 543 : 311 - 382
  • [50] q-deformed Circular Operators
    Ota, S
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 54 (04) : 555 - 569