Invariant subpixel target identification in hyperspectral imagery

被引:17
|
作者
Thai, B [1 ]
Healey, G [1 ]
机构
[1] Univ Calif Irvine, Comp Vis Lab, Irvine, CA 92697 USA
关键词
subpixel detection; hyperspectral imagery;
D O I
10.1117/12.353034
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present an algorithm for subpixel material identification that is invariant to the illumination and atmospheric conditions. The target material spectral reflectance is the only prior information required by the algorithm. A target material subspace model is constructed from the reflectance using a physical model and a background subspace model is estimated directly from the image. These two subspace models are used to compute maximum likelihood estimates for the target material component and the background component at each image pixel. These estimates form the basis of a generalized likelihood ratio test for subpixel material identification. We present experimental results using HYDICE imagery that demonstrate the utility of the algorithm for subpixel material identification under varying illumination and atmospheric conditions.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [31] Unified Lagrangian Neural Network method for subpixel classification in hyperspectral imagery
    Szu, H
    Ren, H
    WAVELET APPLICATIONS VIII, 2001, 4391 : 314 - 329
  • [32] SPARSE MODELING FOR HYPERSPECTRAL IMAGERY WITH LIDAR DATA FUSION FOR SUBPIXEL MAPPING
    Castrodad, Alexey
    Khuon, Timothy
    Rand, Robert
    Sapiro, Guillermo
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7275 - 7278
  • [33] Nonlocal Total Variation Subpixel Mapping for Hyperspectral Remote Sensing Imagery
    Feng, Ruyi
    Zhong, Yanfei
    Wu, Yunyun
    He, Da
    Xu, Xiong
    Zhang, Liangpei
    REMOTE SENSING, 2016, 8 (03)
  • [34] Hyperspectral subpixel target detection using the linear mixing model
    Manolakis, D
    Siracusa, C
    Shaw, G
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07): : 1392 - 1409
  • [35] Subpixel target implantation to assess pansharpening performance on hyperspectral datasets
    Ducay, Rey
    Messinger, David W.
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVII, 2021, 11727
  • [36] Hyperspectral subpixel target detection based on extended mathematical morphology
    Liu, Chang
    Li, Junwei
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2015, 44 (10): : 3141 - 3147
  • [37] Learning Single Spectral Abundance for Hyperspectral Subpixel Target Detection
    Zhu, Dehui
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 10134 - 10144
  • [38] A Novel Pixel/Subpixel Target Detection Method for Hyperspectral Image
    Liu, Da
    Chen, Hongliang
    Gu, Zhangyuan
    Li, Jianxun
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3923 - 3928
  • [39] Discriminative Multiple-Instance Hyperspectral Subpixel Target Characterization
    Jiao, Changzhe
    Yang, Bo
    Wang, Qi
    Wang, Guozhen
    Wu, Jinjian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] Kernel-based subpixel target detection for hyperspectral images
    Gu Yanfeng
    Liu Ying
    Zhang Ye
    CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (03): : 485 - 488