Sparse approximations of matrix functions via numerical integration of ODEs

被引:0
|
作者
Chehab, Jean-Paul [1 ]
机构
[1] Univ Picardie Jules Verne, UMR 7352, LAMFA, Amiens, France
来源
关键词
Preconditioning; iterative methods; matrix functions; sparse approximation; Stability; ODEs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical computation of matrix functions f(X) via matrix ODE integration. The solution is modeled as an asymptotic steady state of a proper differential system. The framework we propose, allows to define flows of sparse matrices leading to sparse approximations to f(X). We discuss of this approach giving stability and approximation results in a general case. We apply our method to the factorization of matrices (LU, Cholesky) as well as the computation of the square root. Numerical illustrations are presented.
引用
收藏
页码:95 / 132
页数:38
相关论文
共 50 条
  • [21] Numerical integration of high-order variational equations of ODEs
    Gimeno, Joan
    Jorba, Angel
    Jorba-Cusco, Marc
    Miguel, Narcis
    Zou, Maorong
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [22] Novel Pade-based algorithms for numerical integration of ODEs
    Condon, Marissa
    Dautbegovic, Emira
    Xu, Tao
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2008, 27 (06) : 1402 - 1417
  • [23] Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions (vol 16, pg 387, 2012)
    Bisetti, Fabrizio
    COMBUSTION THEORY AND MODELLING, 2012, 16 (05) : 940 - 940
  • [24] Numerical integration of detector response functions via Monte Carlo simulations
    Kelly, K. J.
    O'Donnell, J. M.
    Gomez, J. A.
    Taddeucci, T. N.
    Devlin, M.
    Haight, R. C.
    White, M. C.
    Mosby, S. M.
    Neudecker, D.
    Buckner, M. Q.
    Wu, C. Y.
    Lee, H. Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 866 : 182 - 189
  • [25] Laplace approximations for hypergeometric functions with matrix argument
    Butler, RW
    Wood, ATA
    ANNALS OF STATISTICS, 2002, 30 (04): : 1155 - 1177
  • [26] A survey on methods for computing matrix exponentials in numerical schemes for ODEs
    Del Buono, N
    Lopez, L
    COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS, 2003, 2658 : 111 - 120
  • [27] Convex approximations to sparse PCA via Lagrangian duality
    Luss, Ronny
    Teboulle, Marc
    OPERATIONS RESEARCH LETTERS, 2011, 39 (01) : 57 - 61
  • [28] Relative error long-time behavior in matrix exponential approximations for numerical integration: the stiff situation
    S. Maset
    Calcolo, 2022, 59
  • [29] Constructive sparse trigonometric approximations for the functions with generalized mixed smoothness
    Stasyuk S.A.
    Journal of Mathematical Sciences, 2017, 222 (6) : 787 - 796
  • [30] Relative error long-time behavior in matrix exponential approximations for numerical integration: the stiff situation
    Maset, S.
    CALCOLO, 2022, 59 (02)