HOW TO REALIZE PHASE OPTIMIZED QUANTUM STATES

被引:9
|
作者
BANDILLA, A
机构
[1] Arbeitsgruppe Nichtklassische Strahlung, Max-Planck-Gesellschaft, Humboldt-Universität Berlin, Rudower Chaussee 5
关键词
D O I
10.1016/0030-4018(92)90024-L
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the problem of identifying a nonlinear optical process which changes a coherent state in such a way that the resulting state comes close to a phase optimized state. Due to the uncertainty relation this state must possess a specially broadened photon distribution what points to degenerate parametric amplification to provide such a broadening. Detailed numerical calculations show the feasibility of experimentally realizing approximate phase optimized states by optimized parametric amplification. Investigating also the photon and the phase probability distributions reveals the reasons why such optima exist.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 50 条
  • [31] OPTICAL FEEDBACK FROM QUANTUM-NONDEMOLITION MEASUREMENTS - HOW TO REALIZE A MEASUREMENT APPARATUS TO OBSERVE MACROSCOPIC QUANTUM COHERENCE
    TOMBESI, P
    VITALI, D
    APPLIED PHYSICS B-LASERS AND OPTICS, 1995, 60 (2-3): : S69 - S75
  • [32] States for phase estimation in quantum interferometry
    Combes, J
    Wiseman, HM
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (01) : 14 - 21
  • [33] PHASE PROPERTIES OF QUANTUM STATES OF LIGHT
    BURAK, D
    WODKIEWICZ, K
    PHYSICAL REVIEW A, 1992, 46 (05): : 2744 - 2748
  • [34] Quantum phase transitions for excited states
    Cejnar, P.
    Stransky, P.
    CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS, 2009, 1090 : 169 - 173
  • [35] QUANTUM STATES OF THE OSCILLATOR PHASE OPERATOR
    POPOV, VN
    YARUNIN, VS
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1992, 55 (10): : 1529 - 1530
  • [36] Admissible states in quantum phase space
    Dias, NC
    Prata, JN
    ANNALS OF PHYSICS, 2004, 313 (01) : 110 - 146
  • [37] Phase squeezing of quantum hypergraph states
    Sarkar, Ramita
    Dutta, Supriyo
    Banerjee, Subhashish
    Panigrahi, Prasanta K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (13)
  • [38] QUANTUM STATES WITH PHASE MINIMAL UNCERTAINTY
    KULAGA, AA
    KHALILI, FY
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1993, 104 (04): : 3358 - 3368
  • [39] On the quantum phase operator for coherent states
    Skagerstam, BSK
    Bergsjordet, BÅ
    PHYSICA SCRIPTA, 2004, 70 (01) : 26 - 32
  • [40] Approaching multichannel Kondo physics using correlated bosons: Quantum phases and how to realize them
    Lal, Siddhartha
    Gopalakrishnan, Sarang
    Goldbart, Paul M.
    PHYSICAL REVIEW B, 2010, 81 (24):