COMMUNICATION COMPLEXITY OF MATRIX COMPUTATION OVER FINITE-FIELDS

被引:6
|
作者
CHU, JI [1 ]
SCHNITGER, G [1 ]
机构
[1] PENN STATE UNIV,DEPT COMP SCI,UNIVERSITY PK,PA 16802
来源
MATHEMATICAL SYSTEMS THEORY | 1995年 / 28卷 / 03期
关键词
D O I
10.1007/BF01303056
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the communication complexity of singularity testing in a finite field, where the problem is to determine whether a given square matrix M is singular. We show that, for n x n matrices whose entries are elements of a finite field of size p, the communication complexity of this problem is Theta(n(2) log p). Our results imply tight bounds for several other problems like determining the rank and computing the determinant.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条