Acid Tolerance Mechanisms in Soil Grown Plants

被引:0
|
作者
Iqbal, M. T. [1 ]
机构
[1] Univ Rajshahi, Dept Agron & Agr Extens, Rajshahi 6205, Bangladesh
来源
关键词
Organic acid exudation; Al and P interaction; apoplast; plant tissue tolerance;
D O I
暂无
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Acid soil covers 30% of ice-free land in the world, mainly distributed in the tropical and subtropical regions where agriculture is the dominant business. Soil acidity, particularly aluminium (Al) and manganese (Mn) toxicity, often constitutes one of the critical constraints limiting crop production on these acid soils. Research on acid-tolerance mechanisms of soil grown plants will have important implication in facilitating soil and crop management in the tropical and subtropical regions. Soil becomes acidic due to natural soil acidification process. In acidic soils, Al toxicity is common due to solubilisation of AR ion which is toxic for plants. The main symptom of Al3+ toxicity is the inhibition of root growth. After Al3+ toxicity, Mn toxicity ranks as the second major concern for plant growth in acid soils. Unlike Al, Mn is an essential plant nutrient and is toxic when taken up in excessive quantities by plants. In addition to Al and Mn toxicity, low pH also affects plant growth in highly acid soils. Low pH stress facilitates H+ influx into root tissues resulting in poor plant growth. However, phosphorus (P) deficiency is also common in acid soils. Phosphorus leads to an Al-phosphate complex in acid soils that result in less P availability in these soils. Different Al tolerance mechanisms such as an increase in rhizosphere pH, plant tissue tolerance, exudation of organic acid and role of apoplast are discussed in this review This review concludes that P may play an important role in Al tolerance. Thus, understanding acid tolerance mechanisms in soil grown plants has important implications for sustainable agriculture in the tropical and subtropical regions. This review suggests that introduction of Al tolerant crops in acid soils will improve crop production in these soils.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] LEAD DISTRIBUTION IN PLANTS GROWN ON A CONTAMINATED SOIL
    JOHN, MK
    VANLAERHOVEN, CJ
    ENVIRONMENTAL LETTERS, 1972, 3 : 111 - +
  • [32] THE NUTRITIVE VALUE OF PLANTS GROWN WITH AND WITHOUT SOIL
    ARNON, DI
    SIMMS, HD
    MORGAN, AF
    SOIL SCIENCE, 1947, 63 (02) : 129 - 133
  • [33] ACID SOIL TOLERANCE IN WHEAT
    CARVER, BF
    OWNBY, JD
    ADVANCES IN AGRONOMY, VOL 54, 1995, 54 : 117 - 173
  • [34] YIELD OF AN ALFALFA GERMPLASM SELECTED FOR ACID SOIL TOLERANCE WHEN GROWN IN SOILS WITH MODIFIED SUBSOILS
    BOUTON, JH
    SUMNER, ME
    HAMMEL, JE
    SHAHANDEH, H
    CROP SCIENCE, 1986, 26 (02) : 334 - 336
  • [35] SOME MECHANISMS OF SALT TOLERANCE IN CROP PLANTS
    GORHAM, J
    JONES, RGW
    MCDONNELL, E
    PLANT AND SOIL, 1985, 89 (1-3) : 15 - 40
  • [36] Molecular mechanisms of Al tolerance in gramineous plants
    Jian Feng Ma
    Zhi Chang Chen
    Ren Fang Shen
    Plant and Soil, 2014, 381 : 1 - 12
  • [37] Genetic and molecular mechanisms of aluminum tolerance in plants
    Simoes, C. C.
    Melo, J. O.
    Magalhaes, J. V.
    Guimaraes, C. T.
    GENETICS AND MOLECULAR RESEARCH, 2012, 11 (03): : 1949 - 1957
  • [38] Molecular mechanisms of desiccation tolerance in resurrection plants
    Gechev, Tsanko S.
    Dinakar, Challabathula
    Benina, Maria
    Toneva, Valentina
    Bartels, Dorothea
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2012, 69 (19) : 3175 - 3186
  • [39] Adaptive mechanisms for stress tolerance in Antarctic plants
    Singh, S. M.
    Pereira, N.
    Ravindra, R.
    CURRENT SCIENCE, 2010, 99 (03): : 334 - 340
  • [40] STRESS RESPONSES IN PLANTS: MECHANISMS OF TOXICITY AND TOLERANCE
    Kessler, Andre
    QUARTERLY REVIEW OF BIOLOGY, 2017, 92 (03): : 339 - 339