A POSTERIORI LOCAL ERROR ESTIMATION AND ADAPTIVE TIME-STEPPING FOR NEWMARK INTEGRATION IN DYNAMIC ANALYSIS

被引:61
|
作者
ZENG, LF [1 ]
WIBERG, NE [1 ]
LI, XD [1 ]
XIE, YM [1 ]
机构
[1] UNIV COLL SWANSEA,INST NUMER METHODS ENGN,SWANSEA SA2 8PP,W GLAM,WALES
来源
关键词
D O I
10.1002/eqe.4290210701
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A simple a posteriori local error estimate for Newmark time integration schemes in dynamic analysis is presented, based on the concept of a so called 'post-processing' technique. In conjunction with the error estimate, an adaptive time-stepping algorithm is described, which adjusts the time step size so that the local error of each time step is within a prescribed error tolerance. Numerical examples given in the paper indicate that the error estimate is asymptotically convergent, computationally efficient and convenient, and the adaptive time-stepping scheme can predict a nearly optimal step size from time to time, thus making the numerical solution reliable in an efficient manner.
引用
收藏
页码:555 / 571
页数:17
相关论文
共 50 条
  • [41] Adaptive time-stepping strategies for nonlinear stochastic systems
    Kelly, Conall
    Lord, Gabriel J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1523 - 1549
  • [42] Generalizing global error estimation for ordinary differential equations by using coupled time-stepping methods
    Constantinescu, Emil M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 332 : 140 - 158
  • [43] Adaptive Time-stepping Method for CMP Simulation Efficiency
    Zhang, Rui
    Xie, Yu-wei
    Zhang, Qing
    Kan, Huan
    Pan, Wei-wei
    2024 INTERNATIONAL SYMPOSIUM OF ELECTRONICS DESIGN AUTOMATION, ISEDA 2024, 2024, : 587 - 591
  • [44] Local Time-Stepping for Explicit Discontinuous Galerkin Schemes
    Gassner, Gregor
    Dumbser, Michael
    Hindenlang, Florian
    Munz, Claus-Dieter
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 171 - 177
  • [45] A stable finite-difference time-domain scheme for local time-stepping on an adaptive mesh
    Pederson, Dylan M.
    Raja, Laxminarayan L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 456 - 476
  • [46] Correction of the Approximation Error in the Time-Stepping Finite Element Method
    Kim, Byung-taek
    Yu, Byoung-hun
    Choi, Myoung-hyun
    Kim, Ho-hyun
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2009, 4 (02) : 229 - 233
  • [47] Correction of the approximation error in the time-stepping finite element method
    Dept. of Electrical Engineering, Kunsan National University, Korea, Republic of
    J. Electr. Eng. Technol., 2009, 2 (229-233):
  • [48] AUTOMATIC TIME-STEPPING ALGORITHM FOR DYNAMIC PROBLEMS.
    Bergan, Pal G.
    Mollestad, Egil
    1600, (49):
  • [49] Adaptive meshing for nanophotonicsusing a posteriori error estimation
    Svardsby, Albin J.
    Tassin, Philippe
    OPTICS EXPRESS, 2024, 32 (14): : 24592 - 24602
  • [50] An hp a priori error analysis of the DG time-stepping method for initial value problems
    Schötzau, D
    Schwab, C
    CALCOLO, 2000, 37 (04) : 207 - 232