ON THE MAXIMUM WEIGHT CLIQUE PROBLEM

被引:26
|
作者
BALAS, E
CHVATAL, V
NESETRIL, J
机构
[1] MCGILL UNIV, MONTREAL H3A 2T5, QUEBEC, CANADA
[2] CHARLES UNIV, CS-11636 PRAGUE 1, CZECHOSLOVAKIA
关键词
D O I
10.1287/moor.12.3.522
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:522 / 535
页数:14
相关论文
共 50 条
  • [31] New applications of clique separator decomposition for the Maximum Weight Stable Set problem
    Brandstaedt, Andreas
    Le, Van Bang
    Mahfud, Suhail
    THEORETICAL COMPUTER SCIENCE, 2007, 370 (1-3) : 229 - 239
  • [32] On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem
    Brandstadt, Andreas
    Hoang, Chinh T.
    THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) : 295 - 306
  • [33] New applications of clique separator decomposition for the maximum weight stable set problem
    Brandstädt, A
    Le, VB
    Mahfud, S
    FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 516 - 527
  • [34] A Two-Stage MaxSAT Reasoning Approach for the Maximum Weight Clique Problem
    Jiang, Hua
    Li, Chu-Min
    Liu, Yanli
    Manya, Felip
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1338 - 1346
  • [35] The combinatorics of pivoting for the maximum weight clique
    Locatelli, M
    Bomze, IM
    Pelillo, M
    OPERATIONS RESEARCH LETTERS, 2004, 32 (06) : 523 - 529
  • [36] On clique separators, nearly chordal graphs, and the maximum weight stable set problem
    Brandstädt, A
    Hoàng, CT
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 265 - 275
  • [37] A new DNA-based approach to solve the maximum weight clique problem
    Han, Aili
    Zhu, Daming
    COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 320 - 327
  • [38] Solving the maximum vertex weight clique problem via binary quadratic programming
    Wang, Yang
    Hao, Jin-Kao
    Glover, Fred
    Lu, Zhipeng
    Wu, Qinghua
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (02) : 531 - 549
  • [39] Solving the maximum vertex weight clique problem via binary quadratic programming
    Yang Wang
    Jin-Kao Hao
    Fred Glover
    Zhipeng Lü
    Qinghua Wu
    Journal of Combinatorial Optimization, 2016, 32 : 531 - 549
  • [40] A hybrid heuristic for the maximum clique problem
    Alok Singh
    Ashok Kumar Gupta
    Journal of Heuristics, 2006, 12 : 5 - 22