THE JET PRELIMINARY TRITIUM EXPERIMENT

被引:11
|
作者
REBUT, PH
ADAMS, JM
ALPER, B
ALTMANN, H
ANDERSEN, A
ANDREW, P
ALIARSHAD, S
BAILEY, W
BALET, B
BARABASCHI, P
BARANOV, Y
BARKER, P
BARNSLEY, R
BARONIAN, M
BARTLETT, DV
BELL, AC
BENALI, G
BERTOLI, P
BERTOLINI, E
BHATNAGAR, V
BICKLEY, AJ
BOND, D
BONICELLI, T
BOOTH, SJ
BOSIA, G
BOTMAN, M
BOUCHER, D
BOUCQUEY, P
BRANDON, M
BREGER, P
BRELEN, H
BREWERTON, WJ
BRINKSCHULTE, H
BROWN, T
BRUSATI, M
BUDD, T
BURES, M
BURTON, P
BUSINARO, T
BUTCHER, P
BUTTGEREIT, H
CALDWELLNICHOLS, C
CAMPBELL, DJ
CAMPLING, D
CARD, P
CELENTANO, G
CHALLIS, CD
CHANKIN, AV
CHERUBINI, A
CHIRON, D
机构
[1] UKAEA,HARWELL,OXON,ENGLAND
[2] UNIV LEICESTER,LEICESTER LE1 7RH,ENGLAND
[3] UNIV COMPLUTENSE MADRID,MADRID 3,SPAIN
[4] HUNGARIAN ACAD SCI,CENT RES INST PHYS,H-1525 BUDAPEST,HUNGARY
[5] UNIV OXFORD,INST MATH,OXFORD,ENGLAND
[6] UNIV ESSEX,COLCHESTER CO4 3SQ,ESSEX,ENGLAND
[7] FREE UNIV BERLIN,W-1000 BERLIN 33,GERMANY
[8] UNIV BIRMINGHAM,BIRMINGHAM B15 2TT,W MIDLANDS,ENGLAND
[9] ROYAL INST TECHNOL,S-10044 STOCKHOLM 70,SWEDEN
[10] PRINCETON UNIV,PLASMA PHYS LAB,PRINCETON,NJ 08544
[11] UNIV LONDON,IMPERIAL COLL,LONDON,ENGLAND
[12] UKAEA,CULHAM LAB,ABINGDON OX14 3DB,OXON,ENGLAND
[13] MAX PLANCK INST PLASMA PHYS,W-8046 GARCHING,GERMANY
[14] INST NUCL STUDIES,OTWOCK,POLAND
[15] FOM,INST PLASMAFYS,NIEUWEGEIN,NETHERLANDS
[16] IV KURCHATOV ATOM ENERGY INST,MOSCOW,USSR
[17] UNIV MILAN,DIPARTIMENTO FIS,I-20122 MILAN,ITALY
[18] QUEENS UNIV BELFAST,BELFAST BT7 1NN,ANTRIM,NORTH IRELAND
[19] N CAROLINA STATE UNIV,RALEIGH,NC 27695
[20] NATL INST FUS SCI,NAGOYA,JAPAN
[21] UNIV STRATHCLYDE,GLASGOW G1 1XW,SCOTLAND
[22] CIEMAT,MADRID,SPAIN
[23] UNIV TORONTO,INST AEROSP STUDIES,TORONTO M5S 1A1,ONTARIO,CANADA
[24] MV KELDYSH APPL MATH INST,MOSCOW,USSR
[25] ACAD SINICA,INST PLASMA PHYS,HEFEI,PEOPLES R CHINA
[26] LNETI,SAVACEM,PORTUGAL
[27] MIT,CTR PLASMA FUS,BOSTON,MA
[28] ENEA,FRASCATI,ITALY
关键词
D O I
10.1088/0741-3335/34/13/002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The first tokamak discharges with deuterium-tritium mixtures have been carried out in the Joint European Torus (JET). The main objectives were to produce more than 1MW of fusion power in a controlled way, to determine tritium retention in torus systems and to establish effective means of tritium removal. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. Deuterium plasmas were heated by high power deuterium neutral beams from fourteen sources and fuelled by two neutral beam sources injecting tritium. In the be D-T discharge, the tritium concentration was about 11 % at peak performance, when total neutron emission rate was 6.0 x 10(17) s-1, with 1.7MW of fusion power. The fusion amplification factor, Q(DT) was 0. 1 5. With optimum tritium concentration, this pulse would have produced a fusion power almost-equal-to 5MW and nominal Q(DT)=0.46. The same extrapolation for the best pure deuterium discharge gives about 11 MW and a nominal Q(DT)=1. 14. Techniques for introducing, tracking, monitoring and recovering tritium were highly effective.
引用
收藏
页码:1749 / 1758
页数:10
相关论文
共 50 条
  • [31] Tritium related studies at the JET facilities
    Lässer, R
    Bekris, N
    Bell, AC
    Caldwell-Nichols, C
    Cristescu, I
    Ciattaglia, S
    Coad, P
    Day, C
    Glugla, M
    Likonen, J
    Murdoch, DK
    Rosanvallon, S
    Scaffidi-Argentina, F
    FUSION ENGINEERING AND DESIGN, 2003, 69 (1-4) : 75 - 80
  • [32] The recycling and handling of tritium and beryllium at JET
    Bell, AC
    FUSION ENGINEERING AND DESIGN, 1998, 39-40 : 865 - 873
  • [33] TRITIUM RETENTION IN JET CRYOPANEL SAMPLES
    WALTHERS, CR
    JENKINS, EM
    NARUSE, Y
    MAYAUX, C
    OBERT, W
    FUSION TECHNOLOGY, 1992, 21 (02): : 883 - 885
  • [34] Tritium retention in JET cryopanel samples
    Walthers, C.R.
    Jenkins, E.M.
    Mayaux, C.
    Obert, W.
    Naruse, Yuji
    Fusion Technology, 1992, 21 (2 pt 2): : 883 - 885
  • [35] ROUTINE TRITIUM RELEASES FROM JET
    BELL, AC
    BALLANTYNE, P
    CALDWELLNICHOLS, C
    WYKES, M
    FUSION TECHNOLOGY, 1992, 21 (02): : 506 - 511
  • [36] Tritium inventory in the first wall of JET
    Peacock, AT
    Andrew, PA
    Brennan, D
    Coad, JP
    Hemmerich, H
    Knipe, S
    Penzhorn, RD
    Pick, M
    FUSION ENGINEERING AND DESIGN, 2000, 49-50 : 745 - 752
  • [37] Tritium transport experiments on the JET tokamak
    Zastrow, KD
    Adams, JM
    Baranov, Y
    Belo, P
    Bertalot, L
    Brzozowski, JH
    Challis, CD
    Conroy, S
    de Baar, M
    de Vries, P
    Dumortier, P
    Ferreira, J
    Garzotti, L
    Hender, TC
    Joffrin, E
    Kiptily, V
    Mailloux, J
    McDdonald, DC
    Neu, R
    O'Mullane, M
    Nave, MFF
    Ongena, J
    Popovichev, S
    Stamp, M
    Stober, J
    Stork, D
    Voitsekhovitch, I
    Valovic, M
    Weisen, H
    Whiteford, AD
    Zabolotsky, A
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 : B255 - B265
  • [38] Performance of the improved tritium decanting facility in support of JET tritium operations
    Withycombe, Alex
    Hayes, Nathanya
    Kennedy, David
    Lefebvre, Xavier
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (05)
  • [39] Technical rehearsal of tritium operation at JET
    Belonohy, Eva
    Baker, Arron
    Balshaw, Nick
    Bernardo, Joao
    Blatchford, Peter
    Camp, Patrick
    Cane, Jenny
    Ciric, Dragoslav
    Craven, Richard
    Emery, Sean
    Felton, Robert
    Gee, Steve
    Graham, Bill
    Haupt, Tony
    Hotchin, Simon
    Jones, Graham
    Keeling, David
    Jones, Timothy
    Keenan, Tom
    Knipe, Stuart
    McAdams, Roy
    Rimini, Fernanda
    Sips, Adrianus
    Warren, Robert
    Zastrow, Klaus-Dieter
    FUSION ENGINEERING AND DESIGN, 2017, 123 : 196 - 200
  • [40] Tritium enrichment in the jet divertor and its relation to tritium uptake and retention
    Hillis, DL
    Hogan, JT
    Andrew, P
    Ehrenberg, J
    Groth, M
    von Hellermann, M
    Horton, LD
    Monk, R
    Morgan, P
    Stamp, M
    FUSION TECHNOLOGY, 1998, 34 (03): : 941 - 945