NONHOMOGENEOUS VISCOUS INCOMPRESSIBLE FLUIDS - EXISTENCE OF VELOCITY, DENSITY, AND PRESSURE

被引:325
|
作者
SIMON, J
机构
关键词
D O I
10.1137/0521061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1093 / 1117
页数:25
相关论文
共 50 条
  • [41] On the Convergence Rate of Spectral Approximations for the Equations of Nonhomogeneous Incompressible Fluids
    Ortega-Torres, E.
    Poblete-Cantellano, M.
    Rojas-Medar, M. A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 42 (01) : 91 - 108
  • [42] AN EXISTENCE THEOREM FOR COMPRESSIBLE VISCOUS FLUIDS
    VALLI, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 : 197 - 213
  • [43] On Rayleigh-Taylor instability in nonhomogeneous incompressible elasticity fluids
    Hua, Zhiwei
    Jiang, Han
    Zhang, Xuyan
    Wang, Weiwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [44] GENERALIZED KELVIN-VOIGT EQUATIONS FOR NONHOMOGENEOUS AND INCOMPRESSIBLE FLUIDS
    Antontsev, Stanislav N.
    de Oliveira, Hermenegildo B.
    Khompysh, Khonatbek
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (07) : 1915 - 1948
  • [45] EXISTENCE OF COUETTE FLOWS IN INCOMPRESSIBLE SIMPLE FLUIDS
    AIZICOVICI, S
    FETECAU, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (12): : 659 - 660
  • [46] EXISTENCE OF INSTATIONARY FLOWS IN INCOMPRESSIBLE MICROPOLAR FLUIDS
    LANGE, H
    ARCHIVES OF MECHANICS, 1977, 29 (05): : 741 - 744
  • [47] AN IMPROVED RESULT ON RAYLEIGH TAYLOR INSTABILITY OF NONHOMOGENEOUS INCOMPRESSIBLE VISCOUS FLOWS
    Jiang, Fei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (05) : 1269 - 1281
  • [48] Waves of Pressure in Viscous Incompressible Fluid
    Prosviryakov, E. Yu.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2017), 2017, 1915
  • [49] On the Evolution of Compressible and Incompressible Viscous Fluids with a Sharp Interface
    Kubo, Takayuki
    Shibata, Yoshihiro
    MATHEMATICS, 2021, 9 (06)
  • [50] Rayleigh–Taylor Instability for Viscous Incompressible Capillary Fluids
    Zhipeng Zhang
    Journal of Mathematical Fluid Mechanics, 2022, 24