GENERALIZED HIGHER-ORDER DIFFERENTIATION

被引:1
|
作者
BARNDORFFNIELSEN, OE
BLAESILD, P
MORA, M
机构
[1] AARHUS UNIV,INST MATH,DEPT THEORET STAT,DK-8000 AARHUS C,DENMARK
[2] UNIV PAUL SABATIER,F-41062 TOULOUSE,FRANCE
关键词
D O I
10.1007/BF00052519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:243 / 259
页数:17
相关论文
共 50 条
  • [1] Higher-order symmetric duality with higher-order generalized invexity
    Padhan S.K.
    Nahak C.
    Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 407 - 420
  • [2] GENERALIZED QUATERNIONS OF HIGHER-ORDER
    IAKIN, IL
    FIBONACCI QUARTERLY, 1977, 15 (04): : 343 - 346
  • [3] Higher-Order Partial Differentiation
    Endou, Noboru
    Okazaki, Hiroyuki
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2012, 20 (02): : 113 - 124
  • [4] Generalized higher-order Freud weights
    Clarkson, Peter A.
    Jordaan, Kerstin
    Loureiro, Ana
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2272):
  • [5] Generalized higher-order Snyder model
    Chung, Won Sang
    MODERN PHYSICS LETTERS A, 2017, 32 (19)
  • [6] On higher-order differentiation in nonlinear mechanics
    Charpentier, I.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (02): : 221 - 232
  • [7] Generalized higher-order cone-convex functions and higher-order duality in vector optimization
    Suneja, S. K.
    Sharma, Sunila
    Yadav, Priyanka
    ANNALS OF OPERATIONS RESEARCH, 2018, 269 (1-2) : 709 - 725
  • [8] Generalized higher-order cone-convex functions and higher-order duality in vector optimization
    S. K. Suneja
    Sunila Sharma
    Priyanka Yadav
    Annals of Operations Research, 2018, 269 : 709 - 725
  • [9] Higher-order generalized invexity in variational problems
    Padhan, S. K.
    Nahak, C.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (11) : 1334 - 1341
  • [10] GENERALIZED SOLUTIONS OF HIGHER-ORDER DURATION MEASURES
    NAWALKHA, SK
    LACEY, NJ
    JOURNAL OF BANKING & FINANCE, 1990, 14 (06) : 1143 - 1150