APPLICATION OF MALLIAVIN CALCULUS TO EXACT AND APPROXIMATE OPTION PRICING UNDER STOCHASTIC VOLATILIY

被引:0
|
作者
Kuchuk-yatsenko, S. V. [1 ,2 ]
Mishura, Y. S. [1 ,2 ]
Munchak, Y. Y. [1 ,2 ]
机构
[1] Taras Shevchenko Natl Univ, Dept Integral & Different Equat Mech & Math Fac, Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Dept Math Anal Mech & Math Fac, Kiev, Ukraine
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article is devoted to models of financial markets with stochastic volatility, which is defined by a functional of Ornstein-Uhlenbeck process or Cox-Ingersoll-Ross process. We study the question of exact price of European option. The form of the density function of the random variable, which expresses the average of the volatility over time to maturity is established using Malliavin calculus. The result allows us to calculate the price of the option with respect to minimum martingale measure when the Wiener process driving the evolution of asset price and the Wiener process, which defines volatility, are uncorrelated.
引用
收藏
页码:93 / 115
页数:23
相关论文
共 50 条
  • [21] Optimizing option pricing: Exact and approximate solutions for the time-fractional Ivancevic model
    Ali, Khalid K.
    Maaty, M. A.
    Maneea, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 84 : 59 - 70
  • [22] Exact and approximated option pricing in a stochastic volatility jump-diffusion model
    D'Ippoliti, Fernanda
    Moretto, Enrico
    Pasquali, Sara
    Trivellato, Barbara
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, 2010, : 133 - +
  • [23] A path integral approach to option pricing with stochastic volatility: Some exact results
    Baaquie, BE
    JOURNAL DE PHYSIQUE I, 1997, 7 (12): : 1733 - 1753
  • [24] Sensitivity analysis using Ito-Malliavin calculus and martingales, and application to stochastic optimal control
    Gobet, E
    Munos, R
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (05) : 1676 - 1713
  • [25] Approximate arbitrage-free option pricing under the SABR model
    Yang, Nian
    Chen, Nan
    Liu, Yanchu
    Wan, Xiangwei
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2017, 83 : 198 - 214
  • [26] Option pricing under stochastic volatility models with latent volatility
    Begin, Jean-Francois
    Godin, Frederic
    QUANTITATIVE FINANCE, 2023, 23 (7-8) : 1079 - 1097
  • [27] Exchange option pricing under stochastic volatility: a correlation expansion
    F. Antonelli
    A. Ramponi
    S. Scarlatti
    Review of Derivatives Research, 2010, 13 : 45 - 73
  • [28] Option pricing under stochastic interest rates: An empirical investigation
    Kim Y.-J.
    Asia-Pacific Financial Markets, 2002, 9 (1) : 23 - 44
  • [29] Barrier option pricing and hedging model under stochastic conditions
    Zhao, Yuxin
    Yang, Jianhui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025,
  • [30] Executive Stock Option Pricing in China Under Stochastic Volatility
    Chong, Terence Tai Leung
    Ding, Yue
    Li, Yong
    JOURNAL OF FUTURES MARKETS, 2015, 35 (10) : 953 - 960