Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces

被引:1
|
作者
Argyros, I. K. [1 ]
Gonzalez, D. [2 ]
Khattri, S. K. [3 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ Las Amer, Escuela Ciencias Fis & Matemat, Quito, Ecuador
[3] Stord Haugesund Univ Coll, Dept Engn, Haugesund, Norway
关键词
Banach space; Newton's method; local convergence; radius of convergence;
D O I
10.14712/1213-7243.2015.171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernandez M.A., New iterations of R-order four with reduced computational cost, BIT Numer. Math. 49 (2009), 325-342] cannot be used to solve equations but our results can be applied.
引用
收藏
页码:289 / 300
页数:12
相关论文
共 50 条
  • [21] Local convergence of an at least sixth-order method in Banach spaces
    I. K. Argyros
    S. K. Khattri
    S. George
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [22] Local convergence of an at least sixth-order method in Banach spaces
    Argyros, I. K.
    Khattri, S. K.
    George, S.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (01)
  • [23] A new sixth-order Jarratt-type iterative method for systems of nonlinear equations
    Saima Yaseen
    Fiza Zafar
    Arabian Journal of Mathematics, 2022, 11 : 585 - 599
  • [24] On the local convergence of a fifth-order iterative method in Banach spaces
    Cordero, A.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Torregrosa, J. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 396 - 403
  • [25] ON THE LOCAL CONVERGENCE OF HIGHER ORDER METHODS IN BANACH SPACES
    Sharma, Debasis
    Parhi, Sanjaya Kumar
    FIXED POINT THEORY, 2021, 22 (02): : 855 - 869
  • [26] Positive Solutions for a Class of Fourth-Order Boundary Value Problems in Banach Spaces
    Cai, Jingjing
    Liu, Guilong
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [27] Ball convergence for Steffensen-type fourth-order methods
    Argyros, Ioannis K.
    George, Santhosh
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2015, 3 (04): : 37 - 42
  • [28] On the convergence of a new fourth-order method for finding a zero of a derivative
    Ruan, Dongdong
    Wang, Xiaofeng
    AIMS MATHEMATICS, 2024, 9 (04): : 10353 - 10362
  • [29] Certain improvements of Newton's method with fourth-order convergence
    Chun, Changbum
    Neta, Beny
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (02) : 821 - 828
  • [30] The Third Order Mean-Based Jarratt-Type Method for Finding Simple Roots of Nonlinear Equation
    Ralevic, Nebojsa M.
    Cebic, Dejan
    Pavkov, Ivan
    IEEE 13TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2015, : 123 - 126