THE INSTABILITY OF PARALLEL PREFIX MATRIX MULTIPLICATION

被引:4
|
作者
MATHIAS, R
机构
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1995年 / 16卷 / 04期
关键词
PARALLEL PREFIX; PARALLEL COMPUTATION; SYMMETRICAL EIGENPROBLEM; ERROR ANALYSIS; TRIANGULAR FACTORIZATION;
D O I
10.1137/0916056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that when parallel prefix is used to compute the leading principal miners of a tridiagonal matrix T within a bisection algorithm to compute the eigenvalues of T the relative error in the computed ei,aenvalues can be as great as epsilon kappa(3), where epsilon is machine precision and kappa is the condition number for the problem of computing the eigenvalues of T. An ideal algorithm, like serial bisection, would have forward error epsilon kappa. Forward and backward error bounds for the computed leading principal miners are given. Also, error bounds for the parallel prefix computation of the partial products of a sequence of matrices are given and some applications to other related problems in numerical Linear algebra, including the parallel implementation of the differential qd algorithm, are presented.
引用
收藏
页码:956 / 973
页数:18
相关论文
共 50 条
  • [21] Parallel Complexity of Matrix Multiplication1
    Eunice E. Santos
    The Journal of Supercomputing, 2003, 25 : 155 - 175
  • [22] A Framework for Practical Parallel Fast Matrix Multiplication
    Benson, Austin R.
    Ballard, Grey
    ACM SIGPLAN NOTICES, 2015, 50 (08) : 42 - 53
  • [23] General Parallel Matrix Multiplication on the OTIS Network
    Cai, Zhaoquan
    Wei, Wenhong
    SITIS 2007: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGIES & INTERNET BASED SYSTEMS, 2008, : 476 - +
  • [24] Parallel Computation of Sparse Matrix Vector Multiplication
    Yin, Wei
    He, Yu
    2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SCIENCE AND APPLICATION (FCSA 2011), VOL 3, 2011, : 196 - 199
  • [25] MATRIX VECTOR MULTIPLICATION - PARALLEL ALGORITHMS AND ARCHITECTURES
    CODENOTTI, B
    PUGLISI, C
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 16 (12) : 1057 - 1063
  • [26] Computationally efficient parallel matrix-matrix multiplication on the torus
    Zekri, Ahmed S.
    Sedukhin, Stanislav G.
    HIGH-PERFORMANCE COMPUTING, 2008, 4759 : 219 - 226
  • [27] A flexible class of parallel matrix multiplication algorithms
    Gunnels, J
    Lin, C
    Morrow, G
    van de Geijn, R
    FIRST MERGED INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM & SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, 1998, : 110 - 116
  • [28] Parallel photonic acceleration processor for matrix-matrix multiplication
    Huang, Ying
    Yue, Hengsong
    Ma, Wei
    Zhang, Yiyuan
    Xiao, Yao
    Tang, Yong
    Tang, He
    Chu, Tao
    OPTICS LETTERS, 2023, 48 (12) : 3231 - 3234
  • [29] Prefix Method of Parallel Pattern Search and Homogeneous Computing Matrix
    Titenko, Evgeny Anatolyevich
    Alshaeaa, Hyder Yahya
    Oudah, Atheer Y.
    PROCEEDINGS OF THIRD DOCTORAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, DOSCI 2022, 2023, 479 : 389 - 401
  • [30] Matrix exponentials and parallel prefix computation in a quantum control problem
    Auckenthaler, T.
    Bader, M.
    Huckle, T.
    Spoerl, A.
    Waldherr, K.
    PARALLEL COMPUTING, 2010, 36 (5-6) : 359 - 369