COUNTING PATHS IN YOUNG LATTICE

被引:12
|
作者
GESSEL, IM [1 ]
机构
[1] BRANDEIS UNIV,DEPT MATH,WALTHAM,MA 02254
基金
美国国家科学基金会;
关键词
YOUNG LATTICE; TABLEAUX; OSCILLATING TABLEAUX; SYMMETRICAL FUNCTIONS; SCHUR FUNCTIONS; PIERIS RULE; DIFFERENTIAL POSETS;
D O I
10.1016/0378-3758(93)90038-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Young's lattice is the lattice of partitions of integers, ordered by inclusion of diagrams. Standard young tableaux can be represented as paths in Young's lattice that go up by one square at each step, and more general paths in Young's lattice correspond to more general kinds of tableaux. Using the theory of symmetric functions, in particular Pieri's rule for multiplying a Schur function by a complete symmetric function, we derive formulas for counting paths in Young's lattice that go up or down by horizontal or vertical strips. Our results are related to Richard Stanley's theory of differential posets in the special case of Young's lattice.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
  • [31] Counting paths with Schur transitions
    Diaz, Pablo
    Kemp, Garreth
    Veliz-Osorio, Alvaro
    NUCLEAR PHYSICS B, 2016, 911 : 295 - 317
  • [32] Counting elevated Schroder paths
    Nieto, JH
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (05): : 466 - 467
  • [33] Counting strings in Dyck paths
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    DISCRETE MATHEMATICS, 2007, 307 (23) : 2909 - 2924
  • [34] WEIGHTED LATTICE PATHS
    FRAY, RD
    ROSELLE, DP
    PACIFIC JOURNAL OF MATHEMATICS, 1971, 37 (01) : 85 - &
  • [35] Lattice paths with catastrophes
    Banderier, Cyril
    Wallner, Michael
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (01):
  • [36] Lattice of Delannoy paths
    Autebert, JM
    Latapy, M
    Schwer, SR
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 225 - 234
  • [37] Lattice paths and determinants
    Aigner, M
    COMPUTATIONAL DISCRETE MATHEMATICS: ADVANCED LECTURES, 2001, 2122 : 1 - 12
  • [38] Lattices of lattice paths
    Ferrari, L
    Pinzani, R
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 135 (01) : 77 - 92
  • [39] ON COUNTING LATTICE FREQUENCIES
    ROSENSTOCK, HB
    PHYSICAL REVIEW, 1954, 95 (02): : 617 - 618
  • [40] ON A PROPERTY OF LATTICE PATHS
    HANDA, BR
    MOHANTY, SG
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 14 (01) : 59 - 62