INTEGRABLE 4 VORTEX MOTION

被引:52
|
作者
ECKHARDT, B
机构
[1] Institut für Festkörperforschung der Kernforschungsanlage, Jülich,5170, Germany
关键词
Phase space methods;
D O I
10.1063/1.867025
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It follows from the Poisson brackets between constants of motion that the motion of four vortices of zero net vorticity is integrable if the total momentum vanishes. The phase space motion of this integrable case is analyzed. One stable and several unstable uniformly rotating configurations are identified. © 1988 American Institute of Physics.
引用
收藏
页码:2796 / 2801
页数:6
相关论文
共 50 条
  • [41] A completely integrable Hamiltonian motion on the surface of a sphere
    Journal of Physics A: Mathematical and General, 31 (06):
  • [42] ON MOTION OF AN INTEGRABLE SYSTEM WITH NONLINEAR NONHOLONOMIC CONSTRAINT
    ZEKOVIC, D
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1992, (03): : 64 - 66
  • [43] Integrable unsteady motion with an application to ocean eddies
    Kirwan, AD
    Lipphardt, BL
    NONLINEAR PROCESSES IN GEOPHYSICS, 1998, 5 (03) : 145 - 151
  • [44] Minimal embeddings of integrable processes in a Brownian motion
    Gushchin, A. A.
    Urusov, M. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (05) : 953 - 955
  • [45] Vortex motion in superfluid 4He: effects of normal fluid flow
    Bhimsen K. Shivamoggi
    The European Physical Journal B, 2013, 86
  • [46] Integrable cases of the problem of the free motion of a gyrostat
    Aslanov, V. S.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2014, 78 (05): : 445 - 453
  • [47] A completely integrable Hamiltonian motion on the surface of a sphere
    Gaffet, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (06): : 1581 - 1596
  • [48] Vortex motion in superfluid 4He: effects of normal fluid flow
    Shivamoggi, Bhimsen K.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (06):
  • [49] LONG-TIME SYMPLECTIC INTEGRATION - THE EXAMPLE OF 4-VORTEX MOTION
    PULLIN, DI
    SAFFMAN, PG
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 432 (1886): : 481 - 494
  • [50] Vortex Motion for the Lake Equations
    Dekeyser, Justin
    Van Schaftingen, Jean
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1459 - 1501