FINITE PROCEDURES FOR SOFIC SYSTEMS

被引:0
|
作者
COVEN, EM
PAUL, ME
机构
[1] WESLEYAN UNIV,DEPT MATH,MIDDLETOWN,CT 06457
[2] UNIV MARYLAND,DEPT MATH,CATONSVILLE,MD 21228
来源
MONATSHEFTE FUR MATHEMATIK | 1977年 / 83卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:265 / 278
页数:14
相关论文
共 50 条
  • [31] Computation in Sofic Quantum Dynamical Systems
    Karoline Wiesner
    James P. Crutchfield
    Natural Computing, 2010, 9 : 317 - 327
  • [32] SOFIC GROUPS ARE NOT LOCALLY EMBEDDABLE INTO FINITE MOUFANG LOOPS
    Ghumashyan, Heghine
    Gurican, Jaroslav
    MATHEMATICA BOHEMICA, 2022, 147 (01): : 11 - 18
  • [33] SEMI-GROUPS AND GRAPHS FOR SOFIC SYSTEMS
    KITCHENS, B
    TUNCEL, S
    ISRAEL JOURNAL OF MATHEMATICS, 1986, 53 (02) : 231 - 255
  • [34] Polynomial decay of correlations for intermittent sofic systems
    Yuri, Michiko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (1-2) : 445 - 464
  • [35] CHARACTERIZING TWO-DIMENSIONAL SOFIC SYSTEMS
    Al-Refaei, Abdulkafi
    Dzul-Kifli, Syahida Che
    Noorani, Mohd. Salmi Md.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 11 (02): : 169 - 183
  • [36] ALMOST MARKOV AND SHIFT EQUIVALENT SOFIC SYSTEMS
    BOYLE, M
    KRIEGER, W
    LECTURE NOTES IN MATHEMATICS, 1988, 1342 : 33 - 93
  • [37] CLASSIFICATION OF SOFIC PROJECTIVE SUBDYNAMICS OF MULTIDIMENSIONAL SHIFTS OF FINITE TYPE
    Pavlov, Ronnie
    Schraudner, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (05) : 3371 - 3421
  • [38] SOFIC CONSTANT-TO-ONE EXTENSIONS OF SUBSHIFTS OF FINITE-TYPE
    BLANCHARD, F
    HANSEL, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) : 259 - 265
  • [39] Orbit Growth of Sofic Shifts and Periodic-Finite-Type Shifts
    Nordin, Azmeer
    Noorani, Mohd Salmi Md
    Mohd, Mohd Hafiz
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [40] Subsystem entropies of shifts of finite type and sofic shifts on countable amenable groups
    Bland, Robert
    Mcgoff, Kevin
    Pavlov, Ronnie
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 2881 - 2914