RELATIVISTIC HYDRODYNAMICS FOR A CHARGED NONVISCOUS FLUID

被引:7
|
作者
WEI, CC
机构
来源
PHYSICAL REVIEW | 1959年 / 113卷 / 06期
关键词
D O I
10.1103/PhysRev.113.1414
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1414 / 1414
页数:1
相关论文
共 50 条
  • [41] Relativistic model of anisotropic charged fluid sphere in general relativity
    Neeraj Pant
    N. Pradhan
    Rajeev K. Bansal
    Astrophysics and Space Science, 2016, 361
  • [42] RELATIVISTIC CHARGED FLUID DYNAMIC MODELS FOR ELECTRON, PHOTON, + NEUTRINO
    HONIG, WM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (04): : 442 - 442
  • [43] Relativistic anisotropic charged fluid spheres with varying cosmological constant
    Ray, Saibal
    Bhadra, Sumana
    Mohanti, G.
    ASTROPHYSICS AND SPACE SCIENCE, 2008, 315 (1-4) : 341 - 346
  • [44] HAMILTON-JACOBI EQUATION FOR RELATIVISTIC CHARGED FLUID FLOW
    SCHMID, LA
    NUOVO CIMENTO B, 1967, 52 (02): : 313 - &
  • [45] RELATIVISTIC CHARGED FLUID MODELS OF PARTICLES, ELECTROMAGNETIC WAVES(PHOTONS)
    HONIG, WM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (01): : 71 - 72
  • [46] Description of a helical motion of an incompressible nonviscous fluid
    Vereshchagin, V. P.
    Subbotin, Yu. N.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (01): : 43 - 51
  • [47] Description of a Helical Motion of an Incompressible Nonviscous Fluid
    Vereshchagin, V. P.
    Subbotin, Yu. N.
    Chernykh, N. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 : S202 - S210
  • [48] Description of a helical motion of an incompressible nonviscous fluid
    V. P. Vereshchagin
    Yu. N. Subbotin
    N. I. Chernykh
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 202 - 210
  • [49] Relativistic wind farm effect: Possibly turbulent flow of a charged, massless relativistic fluid in graphene
    Watson, Mark
    PHYSICS OF FLUIDS, 2022, 34 (08)
  • [50] On the convexity of relativistic hydrodynamics
    Ibanez, Jose M.
    Cordero-Carrion, Isabel
    Marti, Jose M.
    Miralles, Juan A.
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (05)