Eternal domination on 3 x n grid graphs

被引:0
|
作者
Finbow, S. [1 ]
Messinger, M. E. [2 ]
van Bommel, M. F. [1 ]
机构
[1] St Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 1C0, Canada
[2] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E0A 3C0, Canada
来源
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. After each attack, if the guards can "move" to form a dominating set that contains the attacked vertex, then the guards have successfully defended against the attack. We wish to determine the minimum number of guards required to successfully defend against any possible sequence of attacks, the eternal domination number. Since the domination number for grid graphs has been recently determined [Goncalves et al., SIAM J. Discrete Math. 25 (2011), 1443-1453] grid graphs are a natural class of graphs to consider for the eternal dominating set problem. Though the eternal domination number has been determined for 2 x n grids and 4 x n grids, it has remained only bounded for the 3 x n grid. The results in this paper provide major improvements to both the upper and lower bounds of the eternal domination number for 3 x n grid graphs. In particular, we show the conjectured value in [Goldwasser et al., Util. Math. 91 (2013), 47-64] is too small for certain values of n.
引用
收藏
页码:156 / 174
页数:19
相关论文
共 50 条
  • [1] The eternal domination number for 3 x n grid graphs
    Finbow, S.
    van Bommel, M. F.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 76 : 1 - 23
  • [2] Eternal domination numbers of 5 x n grid graphs
    1600, Charles Babbage Research Centre (97):
  • [3] Eternal domination numbers of 4 x n grid graphs
    Finbow, S. (sfinbow@stfx.ca), 1600, Charles Babbage Research Centre (85):
  • [4] CLOSING THE GAP: ETERNAL DOMINATION ON 3 x n GRIDS
    Messinger, M. E.
    Delaney, A. Z.
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (01) : 47 - 61
  • [5] Eternal Total Domination in Graphs
    Klostermeyer, William F.
    Mynhardt, C. M.
    ARS COMBINATORIA, 2012, 107 : 473 - 492
  • [6] Eternal domination on prisms of graphs
    Krim-Yee, Aaron
    Seamone, Ben
    Virgile, Virgelot
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 734 - 736
  • [7] TRIPLE CONNECTED ETERNAL DOMINATION IN GRAPHS
    Mahadevan, G.
    Ponnuchamy, T.
    Avadayappan, Selvam
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 88 - 95
  • [8] Graphs with equal eternal vertex cover and eternal domination numbers
    Klostermeyer, William F.
    Mynhardt, C. M.
    DISCRETE MATHEMATICS, 2011, 311 (14) : 1371 - 1379
  • [9] Eternal Protection in Grid Graphs
    Goldwasser, John L.
    Klostermeyer, William F.
    Mynhardt, C. M.
    UTILITAS MATHEMATICA, 2013, 91 : 47 - 64
  • [10] Matching complexes of 3 x n grid graphs
    Goyal, Shuchita
    Shukla, Samir
    Singh, Anurag
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):