Optimal maps in Monge's mass transport problem

被引:0
|
作者
Gangbo, W [1 ]
McCann, RJ [1 ]
机构
[1] BROWN UNIV,DEPT MATH,PROVIDENCE,RI 02912
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Choose a cost function c(x) greater than or equal to 0 which is either strictly convex on Rd, or a strictly concave function of the distance \x\. Given two non-negative functions f, g is an element of L(1) (R(d)) with the same total mass, we assert the existence and uniqueness of a map which is measure-preserving between f and g, and minimizes the mass transport cost measured against c (x - y). An analytical proof based on the Euler-Lagrange equation of a dual problem is outlined. It assumes f,g to be compactly supported, and disjointly supported in the concave case.
引用
收藏
页码:1653 / 1658
页数:6
相关论文
共 50 条
  • [41] DETERMINATION OF AN OPTIMAL COUPLE IN THE MONGE-KANTOROVITCH PROBLEM
    ABDELLAOUI, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (09): : 981 - 984
  • [42] Existence and Uniqueness of Monge Minimizers for a Multi-Marginal Optimal Transport Problem with Intermolecular Interactions Cost
    Gerolin, Augusto
    Petrache, Mircea
    Vargas-Jimenez, Adolfo
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (02) : 603 - 618
  • [43] On a generalisation of Monge's problem.
    Cerf, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1931, 193 : 636 - 638
  • [44] On regularity of transport density in the Monge-Kantorovich problem
    Buttazzo, G
    Stepanov, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (03) : 1044 - 1055
  • [45] Limits for Monge-Kantorovich mass transport problems
    Garcia Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (04) : 853 - 865
  • [46] An optimization problem with volume constraint with applications to optimal mass transport
    da Silva, Joao Vitor
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (10) : 5870 - 5900
  • [47] REGULARITY OF OPTIMAL TRANSPORT MAPS
    Figalli, Alessio
    ASTERISQUE, 2010, (332) : 341 - 368
  • [48] The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem
    Garcia-Azorero, J.
    Manfredi, J. J.
    Peral, I.
    Rossi, J. D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) : 349 - 366
  • [49] Continuity for the Monge Mass Transfer Problem in Two Dimensions
    Li, Qi-Rui
    Santambrogio, Filippo
    Wang, Xu-Jia
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (02) : 1045 - 1071
  • [50] On the Monge–Kantorovich Mass Transfer Problem in Higher Dimensions
    Xiao Jun LU
    Acta Mathematica Sinica,English Series, 2024, (08) : 1989 - 2004